Using life history traits to assess climate change vulnerability in understudied species

Integrative Conservation
By: , and 

Links

Abstract

Climate change is a primary threat to biodiversity, but for many species, we still lack information required to assess their relative vulnerability to changes. Climate change vulnerability assessment (CCVA) is a widely used technique to rank relative vulnerability to climate change based on species characteristics, such as their distributions, habitat associations, environmental tolerances, and life-history traits. However, for species that we expect are vulnerable to climate change yet are understudied, like many amphibians, we often lack information required to construct CCVAs using existing methods. We used the CCVA framework to construct trait-based models based on life history theory, using empirical evidence of traits and distributions that reflected sensitivity of amphibians to environmental perturbation. We performed CCVAs for amphibians in 7 states in the north-central USA, focusing on 31 aquatic-breeding species listed as species of greatest conservation need by at least 1 state. Because detailed information on habitat requirements is unavailable for most amphibian species, we used species distributions and information on traits expected to influence vulnerability to a drying climate (e.g., clutch size and habitat breadth). We scored species vulnerability based on changes projected for mid-century (2040−2069) from 2 climate models representing “least-dry” and “most-dry” scenarios for the region. Species characteristics useful for discriminating vulnerability in our models included small range size, small clutch size, inflexible diel activity patterns, and smaller habitat breadth. When projected climate scenarios included a mix of drier and wetter conditions in the future, the exposure of a species to drying conditions was most important to relative rankings. When the scenario was universally drier, species characteristics were more important to relative rankings. Using information typically available even for understudied species and a range of climate projections, our results highlight the potential of using life history traits as indicators of relative climate vulnerability. The commonalities we identified provide a framework that can be used to assess other understudied species threatened by climate change.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Using life history traits to assess climate change vulnerability in understudied species
Series title Integrative Conservation
DOI 10.1002/inc3.77
Volume 3
Issue 4
Year Published 2024
Language English
Publisher Wiley
Contributing office(s) Northern Rocky Mountain Science Center
Description 14 p.
First page 368
Last page 381
Country United States
State Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota, Wyoming
Google Analytic Metrics Metrics page
Additional publication details