Increased flood exposure in the Pacific Northwest following earthquake-driven subsidence and sea-level rise

PNAS
By: , and 

Links

Abstract

Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1% floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km2 (low), 160 km2 (medium), or 300 km2 (high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km2 (low), 240 km2 (medium), or 370 km2 (high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision-makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from the earthquake cycle and climate-driven sea-level rise and provide critical insights for tectonically active coastlines globally.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Increased flood exposure in the Pacific Northwest following earthquake-driven subsidence and sea-level rise
Series title PNAS
DOI 10.1073/pnas.2424659122
Volume 122
Issue 18
Publication Date April 28, 2025
Year Published 2025
Language English
Publisher National Academy of Sciences of the United States
Contributing office(s) Alaska Science Center, Earthquake Hazards Program, Geology, Minerals, Energy, and Geophysics Science Center, Pacific Coastal and Marine Science Center
Description e2424659122, 9 p.
Country United States
State California, Oregon, Washington
Additional publication details