Sedimentary geochemistry of deepwater slope deposits in southern Lake Tanganyika (East Africa): Effects of upwelling and minor lake level oscillations

Journal of Sedimentary Research
By: , and 

Metrics

1
Crossref references
Web analytics dashboard Metrics definitions

Links

Abstract

Lake Tanganyika ranks among the most valuable modern analogs for understanding depositional processes of carbonaceous sediments in ancient tropical rifts. Prior research on Lake Tanganyika has emphasized the importance of bottom-water anoxia, depositional processes (hemipelagic settling versus gravity flows), and large-scale (100s of meters) lake level change on the quality of sedimentary organic matter content. Here, facies analysis and numerous organic geochemical tools (elemental, carbon isotope, and programmed pyrolysis) were applied to a radiocarbon-dated core from southern Lake Tanganyika to investigate the accumulation of carbonaceous sediments in a deepwater slope environment influenced by high-frequency climatic fluctuations accompanied by only minor (10s of meters) lake level changes. Considerable variability in lithofacies and geochemistry characterizes the ∼ 1030-year-long core record, chiefly driven by climate-mediated changes to the lake's upwelling system. Laminated diatom oozes and sapropels with mean total organic carbon (TOC) concentrations and hydrogen indices of 6.9 wt.% and 385 mg hydrocarbon/g TOC, respectively, characterize sediments deposited during periods of strong upwelling and variable water levels. Silty sediments deposited via gravity-flow processes were likewise rich in organic matter, likely due to preservation-enhancing bottom-water anoxia. Dilution by reworked tephra was the chief constraint on organic enrichment at the study site. Data from this study reveal that oscillations in atmospheric and limnological processes in the absence of major shoreline movements can result in geochemically diverse deepwater slope sediments, which have implications for improving depositional models of petroliferous continental rift basins.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Sedimentary geochemistry of deepwater slope deposits in southern Lake Tanganyika (East Africa): Effects of upwelling and minor lake level oscillations
Series title Journal of Sedimentary Research
DOI 10.2110/jsr.2021.104
Volume 92
Issue 8
Publication Date August 23, 2022
Year Published 2022
Language English
Publisher Society for Sedimentary Geology
Contributing office(s) Central Energy Resources Science Center
Description 18 p.
First page 721
Last page 738
Other Geospatial Lake Tanganyika
Additional publication details