Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes

Earth System Science Data
By: , and 

Links

Abstract

As the northern high-latitude permafrost zone experiences accelerated warming, permafrost has become vulnerable to widespread thaw. Simultaneously, wildfire activity across northern boreal forest and Arctic/subarctic tundra regions impacts permafrost stability through the combustion of insulating organic matter, vegetation, and post-fire changes in albedo. Efforts to synthesis the impacts of wildfire on permafrost are limited and are typically reliant on antecedent pre-fire conditions. To address this, we created the FireALT dataset by soliciting data contributions that included thaw depth measurements, site conditions, and fire event details with paired measurements at environmentally comparable burned and unburned sites. The solicitation resulted in 52 466 thaw depth measurements from 18 contributors across North America and Russia. Because thaw depths were taken at various times throughout the thawing season, we also estimated end-of-season active layer thickness (ALT) for each measurement using a modified version of the Stefan equation. Here, we describe our methods for collecting and quality-checking the data, estimating ALT, the data structure, strengths and limitations, and future research opportunities. The final dataset includes 48 669 ALT estimates with 32 attributes across 9446 plots and 157 burned–unburned pairs spanning Canada, Russia, and the United States. The data span fire events from 1900 to 2022 with measurements collected from 2001 to 2023. The time since fire ranges from 0 to 114 years. The FireALT dataset addresses a key challenge: the ability to assess impacts of wildfire on ALT when measurements are taken at various times throughout the thaw season depending on the time of field campaigns (typically June through August) by estimating ALT at the end-of-season maximum. This dataset can be used to address understudied research areas, particularly algorithm development, calibration, and validation for evolving process-based models as well as extrapolating across space and time, which could elucidate permafrost–wildfire interactions under accelerated warming across the high-northern-latitude permafrost zone. The FireALT dataset is available through the Arctic Data Center (https://doi.org/10.18739/A2RN3092P, Talucci et al., 2024).

Study Area

Publication type Article
Publication Subtype Journal Article
Title Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes
Series title Earth System Science Data
DOI 10.5194/essd-17-2887-2025
Issue 17
Publication Date June 26, 2025
Year Published 2025
Language English
Publisher Copernicus Publications
Contributing office(s) Alaska Science Center, Geology, Minerals, Energy, and Geophysics Science Center, WMA - Earth System Processes Division
Description 23 p.
First page 2887
Last page 2909
Country Canada, Russia, United States
Other Geospatial Arctic
Additional publication details