Mapping predicted ecological states at landscape scales using remote sensing data and machine learning
Links
- More information: Publisher Index Page (via DOI)
- Open Access Version: Publisher Index Page
- Download citation as: RIS | Dublin Core
Abstract
Dryland ecosystems, covering 45% of the Earth's land and supporting over one-third of the global population, face significant threats from land degradation and ecological state change. Managing these ecosystems is complex, and science-based frameworks like Ecological Site Descriptions and state-and-transition models are essential tools for guiding decisions to support ecological health while maintaining stakeholder values such as grazing, wildlife, and recreation. However, alignment of these frameworks with smaller scale soil survey maps limits their applicability to broader ecological processes. Here, we extend these frameworks to larger landscapes with a machine learning approach that integrates large-scale, high-resolution vegetation data with identified ecological states from a data-driven state-and-transition model developed for a landscape-scale Ecological Site Group. A “global” model, which used combined inputs from multiple remotely sensed datasets, outperformed individual dataset models based on evaluation with independent data. Ecological state maps generated through this approach broaden the utility of state-and-transition models across Ecological Site Groups, providing a more spatially robust tool for land management at watershed and larger landscape scales. These methods, and the associated ecological state maps, can help meet critical needs for improved land condition assessments that support development of resource management plans and help identify priority areas for restoration and conservation.
Study Area
| Publication type | Article |
|---|---|
| Publication Subtype | Journal Article |
| Title | Mapping predicted ecological states at landscape scales using remote sensing data and machine learning |
| Series title | Ecosphere |
| DOI | 10.1002/ecs2.70243 |
| Volume | 16 |
| Issue | 4 |
| Publication Date | April 28, 2025 |
| Year Published | 2025 |
| Language | English |
| Publisher | Ecological Society of America |
| Contributing office(s) | Fort Collins Science Center |
| Description | e70243, 16 p. |
| Country | United States |
| State | Arizona, Colorado, New Mexico, Utah, Wyoming |
| Other Geospatial | Upper Colorado River Basin |