In 2020 the U.S. Geological Survey (USGS), as part of the Upper Mississippi River Restoration (UMRR) Program, began a new project to characterize potential hydrogeomorphic change associated with hydrogeomorphic units (HGUs) and their catenae (units linked by their association with sediment sources and flow origins). The goal of the project was to develop a geographic information system (GIS) database of HGUs for the Upper Mississippi River System (UMRS) available to both scientists and river managers working on UMRR studies and HREP planning and design studies. The characterization was based on a hydrogeomorphic change hierarchical classification developed previously for the UMRS. The products were generated with automated techniques in a GIS using systemic datasets. Landforms were mapped from the 2015 UMRS topobathymetric dataset with geomorphon (shape-based) tools tailored for the large riverscape, valley bottom environments in the UMRS. A clustering analysis was applied to the resulting landforms to identify HGUs associated with zones of perennial low flows, bankfull flows, and overbank floodplains. Catenae were assembled based on the proximity of the units to the main channel, tributary mouths, and side channels from previously published aquatic areas (USACE, 2018) coupled with least-cost flowpath linkages between potential sediment origins and planform change units developed by Rogala, Fitzpatrick, and Henderson (2020). These GIS-based analyses were successful at identifying a range of HGUs using an automated technique with available data across the entire riverscape, with emphasis on those that have the potential for hydrogeomorphic change. Most of the resulting features are depositional, as expected in a large river system. However, this is the first attempt of linking tributary inputs, side channel erosion and levee breaches with their depositional counterparts. The approach was successfully piloted in Pools 8 and 10 in the Upper Impounded Reach and Pool 14 in the Lower Impounded Reach, with next steps for application in reaches of the unimpounded section and Illinois River. This report emphasizes results from Pool 10, which was the focus of most of our attention during the pilot phase.