The Sylhet-Kopili/Barail-Tipam Composite total petroleum system (TPS) (803401) is located in the Assam Province in northeasternmost India and includes the Assam Shelf south of the Brahmaputra River. The area is primarily a southeast-dipping shelf overthrust by the Naga Hills on the southeast and the Himalaya Mountain range to the north. The rocks that compose this TPS are those of the Sylhet-Kopili/Barail-Tipam composite petroleum system. These rocks are those of the Eocene-Oligocene Jaintia Group Sylhet and Kopili Formations, the Oligocene Barail Group, the Oligocene-Miocene Surma and Tipam Groups. These groups include platform carbonates, shallow marine shales and sandstones, and the sandstones, siltstones, shales, and coals of deltaic and lagoonal facies.
Source rocks include the Sylhet and Kopili Formation shales, Barail Group coals and shales, and in the south the Surma Group shales. Total organic content is generally low, averaging from 0.5 to 1.8 percent; it is as high as 9 percent in the Barail Coal Shales.
Maturities are generally low, from Ro 0.45 to 0.7 percent where sampled. Maturity increases to the southeast near the Naga thrust fault and can be expected to be higher in the subthrust. Generation began in early Pliocene. Migration is primarily updip to the northwest (< 5 to 15 kilometers) along the northeast-trending slope of the Assam Shelf, and vertical migration occurs through reactivated basement-rooted faults associated with the plate collisions.
Reservoir rocks are carbonates of the Sylhet Formation, interbedded sandstones of the Kopili Formation and sandstones of the Barail, Surma, and Tipam Groups. Permeability ranges from less than 8 mD (millidarcies) to as high as 800 mD in the Tipam Group. Porosity ranges from less than 7 percent to 30 percent.
Traps are primarily anticlines and faulted anticlines with a few subtle stratigraphic traps. There is also a likelihood of anticlinal traps in the subthrust. Seals include interbedded Oligocene and Miocene shales and clays, and the thick clays of the Pliocene Gurjan Group.