Hourly and daily variation of sediment redox potential in tidal wetland sediments

Biological Science Report 1999-0001
ADA365584INZ
Edited by: W. James Catallo

Links

Abstract

Variation of electrochemical oxidation-reduction (redox) potential was examined in surface salt march sediments under conditions of flooding and tidal simulation in mesocosms and field sites. Time series were generated of redox potential measured in sediment profiles at 2-10 cm depth using combination Pt-Ag/AgCl (ORP) electrodes. Redox potential data were acquired at rapid rates (1-55 samples/h) over extended periods (3-104 days) along with similar times series of temperature (water, air, soil) and pH. It was found that redox potential vaired as a result of water level changes and was unrelated to diurnal changes in temperature or pH, the latter of which changed by <0.5 units over the tide cycles. In closed, hydrostatic microcosms isolated from atmospheric oxygen, development of negative redox potentials proceeded rapidly (>370 mV redox potential decrease in under 48 hours). Attenuatoin of microbial activity by [gamma] y-radiation and toxic chemicals elimintated this response. In tidal salt marsh mesocosms where the sediment-plant assemblages were exposed to a simulated diurnal tide, redox potenial oscillations of 40-300 mV amplitude were recoded that has the same periodicity as the flood-drain cycle. Periodic redoc potential time series were observed repeatedly in sediments receiving tidal pulsing but not in those sediments exposed to static hydrological conditions. Data collected over 12 days from a coastal marsh site experiencing diurnal tides showed similar fluctuations in redox potential. Data from the experimentents indicated that (a) redox potential can be a dynamic, nonlinear variable in coastal and estuarine wetland sediments over hourly and daily scales, and the designs of biogeochemical experiments should reflect this, (b) redox potential can change rapidly and signigicantly in coastal wetland sediments in response of flooding and draining, (c) microbial community processes are primarily determinants of the time course of redox potential in wetland sediments, and elimination of inhibition of microbial activity (e.g. by pollutants) can significantly alter that behavior, and (d) fast redox potential dynamics appear to be characteristic of sediments that experience changes in hydrology. The rapid redox potential changes observed in these systems indicated dynamic metabolic and biogeochemical conditions in the field, and confirmed that hourly and daily redox potential variations should be resolved in studies of sediment functioning.
Publication type Report
Publication Subtype Federal Government Series
Title Hourly and daily variation of sediment redox potential in tidal wetland sediments
Series title Biological Science Report
Series number 1999-0001
Year Published 1999
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) National Wetlands Research Center
Description iv, 10 p.
Google Analytic Metrics Metrics page
Additional publication details