Heat as a tool for studying the movement of ground water near streams
Links
- More information: Publisher Index Page (html)
- Chapters:
- NGMDB Index Page: National Geologic Map Database Index Page (html)
- Download citation as: RIS | Dublin Core
Abstract
Stream temperature has long been recognized as an important water quality parameter. Temperature plays a key role in the health of a stream’s aquatic life, both in the water column and in the benthic habitat of streambed sediments. Many fish are sensitive to temperature. For example, anadromous salmon require specific temperature ranges to successfully develop, migrate, and spawn [see Halupka and others, 2000]. Metabolic rates, oxygen requirements and availability, predation patterns, and susceptibility of organisms to contaminants are but a few of the many environmental responses regulated by temperature.
Hydrologists traditionally treated streams and ground water as distinct, independent resources to be utilized and managed separately. With increasing demands on water supplies, however, hydrologists realized that streams and ground water are parts of a single, interconnected resource [see Winter and others, 1998]. Attempts to distinguish these resources for analytical or regulatory purposes are fraught with difficulty because each domain can supply (or drain) the other, with attendant possibilities for contamination exchange. Sustained depletion of one resource usually results in depletion of the other, propagating adverse effects within the watershed.
An understanding of the interconnections between surface water and ground water is therefore essential. This understanding is still incomplete, but receiving growing attention from the research community. Exchanges between streams and shallow ground-water systems play a key role in controlling temperatures not only in streams, but also in their underlying sediments. As a result, analyses of subsurface temperature patterns provide information about surface-water/ground-water interactions.
Chemical tracers are commonly used for tracing flow between streams and ground water. Introduction of chemical tracers in near-stream environments is, however, limited by real and perceived issues regarding introduced contamination and practical constraints. As an alternative, naturally occurring variations in temperature can be used to track (or trace) the heat carried by flowing water. The hydraulic transport of heat enables its use as a tracer.
Differences between temperatures in the stream and surrounding sediments are now being analyzed to trace the movement of ground water to and from streams. As shown in the subsequent chapters of this circular, tracing the transport of heat leads to a better understanding of the magnitudes and mechanisms of stream/ground-water exchanges, and helps quantify the resulting effects on stream and streambed temperatures.
Chapter 1 describes the general principals and procedures by which the natural transport of heat can be utilized to infer the movement of subsurface water near streams. This information sets the foundation for understanding the advanced applications in chapters 2 through 8. Each of these chapters provides a case study, using heat tracing as a tool, of interactions between surface water and ground water for a different location in the western United States. Technical details of the use of heat as an environmental tracer appear in appendices.
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Heat as a tool for studying the movement of ground water near streams |
Series title | Circular |
Series number | 1260 |
DOI | 10.3133/cir1260 |
Year Published | 2003 |
Language | English |
Publisher | U.S. Geological Survey |
Publisher location | Reston, VA |
Contributing office(s) | Toxic Substances Hydrology Program |
Description | 96 p. |
Google Analytic Metrics | Metrics page |