In August and September of 1993 and January of 1994, the U.S. Geological Survey, under a cooperative agreement with the St. Johns River Water Management District (SJRWMD), conducted geophysical surveys of Kingsley Lake, Orange Lake, and Lowry Lake in northeast Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, observer's logbook, Field Activity Collection System (FACS) logs, and formal FGDC metadata. A filtered and gained GIF image of each seismic profile is also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.
The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and in-house (USGS) software for viewing SEG-Y files (Zihlman, 1992) are also provided.
The data archived here were collected under a cooperative agreement with the St. Johns River Water Management District as part of the USGS Lakes and Coastal Aquifers (LCA) Project. For further information about this study, refer to http://coastal.er.usgs.gov/stjohns, Kindinger and others (1994), and Kindinger and others (2000).
The USGS Florida Integrated Science Center (FISC) - Coastal and Watershed Studies in St. Petersburg, Florida, assigns a unique identifier to each cruise or field activity. For example, 93LCA01 tells us the data were collected in 1993 for the Lakes and Coastal Aquifers (LCA) Project and the data were collected during the first field activity for that project in that calendar year. For a detailed description of the method used to assign the field activity ID, see http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html.
The boomer is an acoustic energy source that consists of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled at the sea surface and when discharged emits a short acoustic pulse, or shot, that propagates through the water and sediment column. The acoustic energy is reflected at density boundaries (such as the seafloor or sediment layers beneath the seafloor), detected by the receiver, and recorded by a PC-based seismic acquisition system. This process is repeated at timed intervals (e.g., 0.5 s) and recorded for specific intervals of time (e.g., 100 ms). In this way, a two-dimensional vertical image of the shallow geologic structure beneath the ship track is produced. Acquisition geometery for 94LCA01 is recorded in the operations logbook. No logbook exists for 93LCA01. Table 1 displays acquisition parameters for both field activities. For more information about the acquisition equipment used, refer to the FACS equipment logs.
The unprocessed seismic data are stored in SEG-Y format (Barry and others, 1975). For a detailed description of the data format, refer to the SEG-Y Format page. See the How To Download SEG-Y Data page for more information about these files. Processed profiles can be viewed as GIF images from the Profiles page. Refer to the Software page for details about the processing and examples of the processing scripts.
Detailed information about the navigation systems used for each field activity can be found in Table 1 and the FACS equipment logs. To view the trackline maps and navigation files, and for more information about these items, see the Navigation page.
The original trace files were recorded in nonstandard ELICS format and later converted to standard SEG-Y format. The original trace files for 94LCA01 lines ORJ127_1, ORJ127_3, and ORJ131_1 were divided into two or more trace files (e.g., ORJ127_1 became ORJ127_1a and ORJ127_1b) because the original total number of traces exceeded the maximum allowed by the processing system. Digital data were not recoverable for 93LCA