Because the stable isotopic compositions of hydrogen (δ2H) and oxygen (δ18O) of animal (including human) tissues, such as hair, nail, and urine, reflect the δ2H and δ18O of water and food ingested by an animal or a human and because the δ2H and δ18O of environmental waters vary geographically, δ2H and δ18O values of tap water samples collected in 2007-2008 from 349 sites in the United States and three selected U.S. territories have been measured in support of forensic science applications, creating one of the largest databases of tap water δ2H and δ18O values to date. The results of replicate isotopic measurements for these tap water samples confirm that the expanded uncertainties (U = 2μc) obtained over a period of years by the Reston Stable Isotope Laboratory from δ2H and δ18O dual-inlet mass spectrometric measurements are conservative, at ±2‰ and ±0.2 ‰, respectively. These uncertainties are important because U.S. Geological Survey data may be needed for forensic science applications, including providing evidence in court cases. Half way through the investigation, an isotope-laser spectrometer was acquired, enabling comparison of dual-inlet isotope-ratio mass spectrometric results with isotope-laser spectrometric results. The uncertainty of the laser-based δ2H measurement results for these tap water samples is comparable to the uncertainty of the mass spectrometric method, with the laser-based method having a slightly lower uncertainty. However, the δ18O uncertainty of the laser-based method is more than a factor of ten higher than that of the dual-inlet isotoperatio mass spectrometric method.