Introduction:
Lake Mead is the largest reservoir by volume in the United States and was created by the construction of the 221-meter high Hoover Dam in 1935 at Black Canyon on the lower Colorado River between Nevada and Arizona (fig. 1). Inflows of water into the lake include three rivers, Colorado, Virgin, and Muddy; as well as Las Vegas Wash, which is now perennial because of discharges from municipal wastewater treatment plants (Covay and Leiker, 1998) and urban stormwater runoff. As the population within the Las Vegas Valley began to increase in the 1940s, the treated effluent volume also has increased and in 1993 it constituted about 96 percent of the annual discharge of Las Vegas Wash (Bevans and others, 1996). The mean flow of Las Vegas Wash into Las Vegas Bay from 1992 to 1998 was about 490,000 m3/d (Preissler and others, 1999) and in 2001 increased to 606,000 m3/d (U.S. Bureau of Reclamation, 2001). The nutrient concentration in most areas of the lake is low, but wastewater discharged into Las Vegas Bay has caused an increased level of nutrients and primary productivity (aquatic plant and algal production) in this area of the lake (LaBounty and Horn, 1997). A byproduct of this increase in productivity has been the establishment of an important recreational fishery in Las Vegas Bay. However, concentrations of chlorophyll a (a measure of algal biomass) have also increased (LaBounty and Horn, 1997). In the spring of 2001, parts of Lake Mead experienced massive algal blooms.
In addition to nutrient loading by wastewater, the presence of numerous synthetic chemicals in water, bottom sediments, and in fish tissue also has been reported (Bevans and others, 1996). Synthetic chemicals discharging into Las Vegas Bay and Lake Mead (fig. 1) originate from several sources that include surplus residential-irrigation water runoff, stormwater runoff, subsurface inflow, and tertiary treated sewage effluent discharging from three sewage-treatment plants. Chemicals detected in Las Vegas Wash and Bay environments include polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (including DDT and DDE), and 'emerging contaminants' such as fragrances/musks, flame retardants, triclosan and its breakdown products, personal care products, and pharmaceuticals (Bevans and others, 1996; Boyd and Furlong, 2002; Leiker and others, in press). Many of these compounds are able to interact with the endocrine system of animals and potentially cause reproductive impacts.
The National Park Service (NPS) manages Lake Mead National Recreation Area (LMNRA) with about 8 million yearly visitors including 500,000 anglers drawn to its world-class recreational fishery. The U.S. Fish and Wildlife Service (FWS) provides management for the federally designated, endangered razorback sucker (Xyrauchen texanus) and for more than 180 species of migratory birds that utilize LMNRA surface waters. These multiple uses of surface water in the area demonstrate their vital importance to the LMNRA as well as the need to maintain the quality of water at levels that are adequate for these uses.