Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

Hydrologic Atlas 730-I
By:

Links

Abstract

The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada.

These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells completed in semi-consolidated- and consolidated-rock aquifers, chiefly sandstone and limestone. Some wells withdraw water from volcanic rocks, igneous and metamorphic rocks, or fractured fine-grained sedimentary rocks, such as shale; however, wells completed in these types of rocks generally yield only small volumes of water.

Most wells in the four-State area of Segment 8 are on privately owned land (fig. 2). Agriculture, primarily irrigation, is one of the largest uses of ground water. The irrigation generally is on lowlands close to streams (fig. 3). Lowlands within a few miles of major streams usually are irrigated with surface water that is diverted by gravity flow from the main stream or a reservoir and transported through a canal system. Surface water also is pumped to irrigate land that gravity systems cannot supply. In addition, ground water is pumped from large-capacity wells to supplement surface water during times of drought or during seasons of the year when surface water is in short supply. Ground water is the only source of water for irrigation in much of the segment. The thickness and permeability of aquifers in the area of Segment 8 vary considerably, as do yields of wells completed in the aquifers. Ground-water levels and artesian pressures (hydraulic head) have declined significantly in some places as a result of excessive withdrawals by wells. State governments have taken steps to control the declines by enacting programs that either limit the number of additional wells that can be completed in a particular aquifer or prevent further ground-water development altogether.

The demand for water is directly related to the distribution of people. In 1990, Montana had a population of 799,065; North Dakota, 638,800; South Dakota, 696,004; and Wyoming, 453,588. The more densely populated areas are on lowlands near major streams. Many of the mountain, desert, and upland areas lack major population centers, particularly in Montana and Wyoming, where use of much of the land is controlled by the Federal Government and withdrawal of ground water is restricted.

Average annual precipitation (1951-80) in Segment 8 ranges from less than 8 inches in parts of Montana and Wyoming to more than 40 inches in some of the mountainous areas (fig. 4). Most storms move eastward through Segment 8 and are particularly common during the winter months. Moisture that evaporates from the Pacific Ocean is absorbed by eastward- moving air. As the moisture-laden air masses move eastward, they rise and cool as they encounter mountain ranges and lose some of their moisture to condensation. Consequently, the western sides of mountain ranges receive the most precipitation, much of it as snow during the winter months. In contrast, the eastern sides of some of the higher mountain ranges are in rain shadows and receive little precipitation. East of the Continental Divide, precipitation that falls during many summer storms results from northward-moving, moisture-laden air masses from the Gulf of Mexico. These air masses move northward when the polar front recedes; accordingly, a major part of the annual precipitation falls on the plains during the growing season. Average annual precipitation minus the total of average annual runoff plus evapotranspiration (the combination of evaporation and transpiration by plants) is the amount of water potentially available for recharge to the aquifers.

Average annual runoff (1951-80) in the area of Segment 8 varies greatly, and the distribution of runoff (fig. 5) generally parallels that of precipitation. In arid and semiarid areas of the segment, most precipitation replenishes soil moisture, evaporates, or is transpired by vegetation, and only a small part of the precipitation is left to maintain streamflow or recharge aquifers. In wetter areas of the segment, much of the precipitation runs off the land surface directly to perennial streams. Because a smaller percentage of precipitation in wet areas usually is lost to evapotranspiration than in dry areas, more water is, therefore, available to recharge aquifers where more precipitation falls. Precipitation that falls as snow generally does not become runoff until spring thaws begin. Runoff is affected in some areas by reservoirs that have been constructed on major streams to mitigate flooding and to store water for irrigation, electrical power generation, and recreation. Water stored in reservoirs during times when runoff is great is subsequently released during drier periods to maintain downstream flow.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming
Series title Hydrologic Atlas
Series number 730
Chapter I
ISBN 0607859741
DOI 10.3133/ha730I
Year Published 1996
Language English
Publisher U.S. Geological Survey
Contributing office(s) U.S. Geological Survey
Description 24 p.
Larger Work Title Ground Water Atlas of the United States
First page I1
Last page I24
Country United States
State Montana, North Dakota, South Dakota, Wyoming
Google Analytic Metrics Metrics page
Additional publication details