The Jamestown mine is located in the Jamestown mining district in western Tuolumne County, California (see Fig. 1). This district is one of many located on or near the Melones fault zone, a major regional suture in the Sierra Nevada foothills. The districts along the Melones fault comprise the Mother Lode gold belt (Clark, 1970).
The Harvard pit is the largest of several open pits mined at the Jamestown site by Sonora Mining Corporation between 1986 and 1994 (Fig. 2; Algood, 1990). It is at the site of an historical mine named the Harvard that produced about 100,000 troy ounces of gold, mainly between 1906 and 1916 (Julihn and Horton, 1940).
Sonora Mining mined and processed about 17,000,000 short tons of ore, with an overall stripping ratio of about 4.5:1, yielding about 660,000 troy ounces of gold (Nelson and Leicht, 1994). Most of this material came from the Harvard pit, which attained dimensions of about 2700 ft (830 m) in length, 1500 ft (460 m) in width, and 600 ft (185 m) in depth. The bottom of the pit is at an elevation of 870 ft (265 m). Since mining operations ceased in mid-1994, the open pit has been filling with water. As of November, 2000, lake level had reached an elevation of about 1170 ft (357 m).
Water quality monitoring data gathered after mine closure showed rising levels of arsenic, sulfate, and other components in the lake, with particularly notable increases accompanying a period of rapid filling in 1995 (County of Tuolumne, 1998). The largest potential source for arsenic in the vicinity of the Harvard pit is arsenian pyrite, the most abundant sulfide mineral related to gold mineralization. A previous study of weathering of arsenian pyrite in similarly mineralized rocks at the Clio mine, in the nearby Jacksonville mining district, showed that arsenic released by weathering of arsenian pyrite is effectively attenuated by adsorption on goethite or coprecipitation with jarosite, depending upon the buffering capacity of the pyrite-bearing rock (Savage and others, 2000). Although jarosite would be expected to dissolve in water having the composition of the developing pit lake, iron oxyhydroxide species (ferrihydrite and goethite) would be stable, and strong partitioning of arsenic onto suspended particles or bottom sediments containing these iron phases would be expected. Arsenic release to the lake would not be expected until stratification develops, producing a reducing, non-circulating hypolimnion in which the iron phases would be destroyed by dissolution.
The fact that arsenic concentrations increased rapidly before the pit lake was deep enough to stratify shows that arsenic may not be attenuated in the ways that the earlier Clio mine area study indicated, and suggested that our understanding of release and transport of arsenic in this environment is incomplete. Therefore, in 1997 we decided to study the chemical evolution of the Harvard pit lake as part of a project on environmental impacts of gold mining in the Sierra Nevada, and in early 1998 we developed a cooperative study with several of the investigators in the Stanford University Department of Geological and Environmental Sciences who had done the Clio study. The U.S. Geological Survey portion of the project has been funded by the Mineral Resources Program.
It is anticipated that a better understanding of the release and transport of arsenic into the Harvard pit lake and its accumulation there will contribute to more accurate predictions of arsenic release from weathering of sulfide-bearing rocks exposed by mining or other activities or events, and to better forecasts of pit lake evolution in this and similar environments, leading to more effective monitoring and mitigation strategies.
An accurate predictive model is needed for the Harvard pit lake to forecast trends in metal concentrations, particularly arsenic, and also concentrations of major cations and anions. As the lake approaches pre-mining groundwater levels the lake water could move down the hydrologic gradient to the southeast into domestic wells, and could also affect the surface water of Woods Creek (see Figures 1-3).
This report presents data for water samples collected from March, 1998 through September, 1999. Selected preliminary data for the pit lake for the 1998 calendar year have been reported (Savage and others, 2000).