Mineral deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types are significantly different, and (2) many types occur in different geologic settings that can be identified from geologic maps. Mineral deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables or for robust estimation of undiscovered deposits-thus we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral deposit models play the central role in transforming geoscience information to a form useful to policy makers. The foundation of mineral deposit models is information about known deposits-the purpose of this publication is to make this kind of information available in digital form for porphyry copper deposits.
This report is an update of an earlier publication about porphyry copper deposits. In this report we have added 84 new porphyry copper deposits and removed 12 deposits. In addition, some errors have been corrected and a number of deposits have had some information, such as grades, tonnages, locations, or ages revised.
This publication contains a computer file of information on porphyry copper deposits from around the world. It also presents new grade and tonnage models for porphyry copper deposits and for three subtypes of porphyry copper deposits and a map showing the location of all deposits. The value of this information and any derived analyses depends critically on the consistent manner of data gathering. For this reason, we first discuss the rules used in this compilation. Next, the fields of the data file are considered. Finally, we provide new grade and tonnage models.