Ample geologic evidence indicates early Holocene and Pleistocene debris flows from the south side of the Santa Catalina Mountains north of Tucson, Arizona, but few records document historical events. On July 31, 2006, an unusual set of atmospheric conditions aligned to produce record floods and an unprecedented number of debris flows in the Santa Catalinas. During the week prior to the event, an upper-level area of low pressure centered near Albuquerque, New Mexico generated widespread heavy rainfall in southern Arizona. After midnight on July 31, a strong complex of thunderstorms developed over central Arizona in a deformation zone that formed on the back side of the upper-level low. High atmospheric moisture (2.00' of precipitable water) coupled with cooling aloft spawned a mesoscale thunderstorm complex that moved southeast into the Tucson basin. A 15-20 knot low-level southwesterly wind developed with a significant upslope component over the south face of the Santa Catalina Mountains advecting moist and unstable air into the merging storms. National Weather Service radar indicated that a swath of 3-6' of rainfall occurred over the lower and middle elevations of the southern Santa Catalina Mountains. This intense rain falling on saturated soil triggered over 250 hillslope failures and debris flows throughout the mountain range. Sabino Canyon, a heavily used recreation area administered by the U.S. Forest Service, was the epicenter of mass wasting, where at least 18 debris flows removed structures, destroyed the roadway in multiple locations, and closed public access for months. The debris flows were followed by streamflow floods which eclipsed the record discharge in the 75-year gaging record of Sabino Creek. In five canyons adjacent to Sabino Canyon, debris flows approached or excited the mountain front, compromising floow conveyance structures and flooding some homes.