A survey of the seagrass resources of Padre Island National Seashore was conducted in fall 2002 and 2003, with additional sampling through 2006, to resolve distribution questions. Location coordinates were recorded to thousandths of minutes of latitude and longitude and converted to decimal degrees (minus decimal degrees for longitude) for import into ArcView (Environmental Systems Research Institute, Inc.). The seagrass core frequency data were developed as a theme in ArcView and overlaid on digital orthophoto quarter quadrangles of the U.S. Geological Survey to show sample depth with respect to mean sea level and frequency of occurrence of seagrass for five samples collected from every station sampled. These data were used to draw boundaries of area submerged at mean sea level and seagrass meadow in relation to the boundary of Padre Island National Seashore. Frequency of seagrass occurrence, mean plant height, shoot density, plant height multiplied by shoot density, live biomass, and dead biomass on a 1' latitude by 0.25' longitude grid were collected, and their distribution was plotted in space and according to depth. A User Guide for displaying data in ArcView is included at the end of this report.
Seagrasses covered almost two-thirds of the regularly flooded part of Laguna Madre within the borders of Padre Island National Seashore. Comparisons with earlier surveys showed that substantial areas of seagrass cover had been lost in deep water between 1988 and 1998 as a result of a persistent phytoplankton bloom, and little recovery has occurred since. Maximum depth of seagrass occurrence responded to changes in water clarity. In contrast, much of the cover at shallow to intermediate depths lost at the south end of the study area between 1988 and 1998 was replaced by 2003. The seven stations with greatest plant height were located in this area of recent recolonization. Continuity of cover as measured by frequency of occurrence was high except near the edge of seagrass meadow. Decrease in this measure may be an indicator of meadow fragmentation, signaling deterioration of seagrass meadow before loss. The other measures of condition were so variable that they were insensitive indicators of impending change.