We provide a probabilistic seismic hazard assessment for the Evansville, Indiana region incorporating information from new surficial geologic mapping efforts on the part of the U.S. Geological Survey (USGS) and the Kentucky and Indiana State Geological Surveys, as well as information on the thickness and properties of near surface soils and their associated uncertainties. The subsurface information has been compiled to determine bedrock elevation and reference depth-dependent shear-wave velocity models for the different soil types. The probabilistic seismic hazard calculation applied here follows the method used for the 2008 U.S. Geological Survey National Seismic Hazard Maps, with modifications to incorporate estimates of local site conditions and their uncertainties, in a completely probabilistic manner. The resulting analysis shows strong local variations of acceleration with 2 percent probability of exceedance in 50 years, particularly for 0.2-second (s) period spectral acceleration (SA), that are clearly correlated with variations in the thickness of unconsolidated soils above bedrock. These values are much greater than the USGS national seismic hazard map values, which assume B/C site conditions. When compared to the national maps with an assumed uniform site D class amplification factor applied, the high-resolution seismic hazard maps have higher amplitudes for peak ground acceleration and 0.2-s SA for most of the map region. However, deamplification relative to the D class national seismic hazard maps appears to play an important role within the limits of the ancient bedrock valley underlying Evansville where soils are thickest. For 1.0-s SA, the new high-resolution seismic hazard maps show levels consistent with D class site response within the limits of this ancient bedrock valley, but levels consistent with B/C site conditions outside.