Kaloko-Honokōhau National Historical Park (KAHO) on western Hawaiʻi was established in 1978 to preserve, interpret, and perpetuate traditional Native Hawaiian culture and activities, including the preservation of a variety of culturally and ecologically significant water resources that are vital to this mission. KAHO water bodies provide habitat for 1 threatened, 11 endangered, and 3 candidate threatened or endangered species. These habitats are sustained by, and in the case of ʻAimakapā Fishpond and the anchialine pools, entirely dependent on, groundwater from the Keauhou aquifer system. Development of inland impounded groundwater in the Keauhou aquifer system may affect the coastal freshwater-lens system on which KAHO depends, if the inland impounded-groundwater and coastal freshwater-lens systems are hydrologically connected. This report documents water-chemistry results from a U.S. Geological Survey study that collected and analyzed water samples from 2012 to 2014 from 25 sites in and near KAHO to investigate potential geochemical indicators in water that might indicate the presence or absence of a hydrologic connection between the inland impounded-groundwater and coastal freshwater-lens systems in the area. Samples were collected under high-tide and low-tide conditions for KAHO sites, and in dry-season and wet-season conditions for all sites. Samples were collected from two ocean sites, two fishponds, three anchialine pools, and three monitoring wells within KAHO. Two additional nearshore wells were sampled on property adjacent to and north of KAHO. Additional samples from the freshwater-lens system were collected from six inland wells located upslope from KAHO, including three production wells. Seven production wells in the inland impounded-groundwater system also were sampled. Water samples were analyzed for major ions, selected trace elements, rare-earth elements, strontium-isotope ratio, and stable isotopes of water. Precipitation samples from five sites were collected roughly along a transect upslope from KAHO. All precipitation samples were analyzed for stable isotopes of water and some precipitation samples were analyzed for rare-earth and selected trace elements.