U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2015 annual report

Open-File Report 2016-1141
By: , and 

Links

Abstract

This is the eighth annual report highlighting U.S. Geological Survey (USGS) science and decision-support activities conducted for the Wyoming Landscape Conservation Initiative (WLCI). The activities address specific management needs identified by WLCI partner agencies. In 2015, USGS scientists continued 24 WLCI projects in 5 categories: (1) acquiring and analyzing resource-condition data to form a foundation for understanding and monitoring landscape conditions and projecting changes; (2) using new technologies to improve the scope and accuracy of landscape-scale monitoring and assessments, and applying them to monitor indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms that drive wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them to use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects. Of the 24 projects, 21 were ongoing, including those that entered new phases or more in-depth lines of inquiry, 2 were new, and 1 was completed.

A highlight of 2015 was the WLCI science conference sponsored by the USGS, Bureau of Land Management, and National Park Service in coordination with the Wyoming chapter of The Wildlife Society. Of 260 participants, 41 were USGS professionals representing 13 USGS science centers, field offices, and Cooperative Wildlife Research Units. Major themes of USGS presentations included using new technologies for developing more efficient research protocols for modeling and monitoring natural resources, researching effects of energy development and other land uses on wildlife species and habitats of concern, and modeling species distributions, population trends, habitat use, and effects of land-use changes. There was also a special session on the effectiveness of Wyoming’s Sage-Grouse Executive Order. Combined, USGS presentations provided WLCI partners with a wealth of information and conservation tools.

The project completed in 2015 yielded an index of important agricultural lands in the WLCI region. The index improves upon existing measures of agricultural productivity and provides planners and managers with additional values to consider when making decisions about land use and conservation actions. The two new projects include an analysis of satellite imagery to quantify sagebrush productivity and mortality, and an evaluation of how groundwater and small streams interact in the upper Green River Basin. Initiated in response to concern among WLCI partners that large areas of sagebrush appear to have died recently, the sagebrush study objectives are to assess effects of these mortality events on overall sagebrush ecosystem productivity, evaluate the feasibility of using satellite imagery to detect patterns in sagebrush mortality over time, and identify factors driving these mortality events. The groundwater-streamflow interaction study is being conducted by hydrologists and fish ecologists to better understand how groundwater-streamflow interactions are affected by energy-resource development and how native fish communities are affected by these factors. Expected outcomes of both new projects will provide WLCI partners with additional information and decision-support tools.

Highlights of ongoing science foundation activities included simulations of nine alternative build-out scenarios for oil and gas development and an associated online fact sheet that explains how the simulations were conducted, with an applied example for the Atlantic Rim. Also completed in 2015 was an update of the USGS online inventory of mineral resources data, and publication of a USGS uranium resource survey for the WLCI region. Combined, the outcomes of this work provide decisionmakers and managers with important baseline information for existing and (or) future planning and monitoring efforts.

Terrestrial monitoring activities in 2015 emphasized the use of satellite data in combination with other technologies and field data to monitor, assess, and (or) forecast distribution patterns and (or) trends in sagebrush ecosystems, seasonal and migration stopover habitats used by mule deer and elk, and semi-arid aspen woodlands. Several professional papers detailing new monitoring models and results have been published. Combined, this and related work will help managers understand distribution patterns and trends among priority habitats, identify areas in need of restoration or conservation, and monitor the effectiveness of habitat-management actions.

Aquatic monitoring activities entailed not only the new groundwater-streamflow interaction study already mentioned, but also continued monitoring with streamgages paired with nearby wells in the Green River Basin to assess groundwater effects on streamflow and surface water temperatures. A map that portrays groundwater levels and general direction of flow in the Green River Basin was published as well. Overall, outcomes of USGS hydrological research and monitoring will inform WLCI partners about water resources in the WLCI region and help to explain fish-community responses to energy-resource development.

In 2015, USGS terrestrial wildlife ecologists continued to make crucial strides towards better understanding wildlife species responses to energy-resource development and other land-use changes. This body of research includes six taxa that require or heavily depend on sagebrush habitats: sage-grouse, pygmy rabbits, 3 songbird species, and mule deer. Native fish communities are also being evaluated. Approaches include modeling and mapping wildlife species distributions, abundances, and trends; using satellite and other technologies to track wildlife seasonal movements; conducting successive phases of research that build on the knowledge gained through prior phases to reveal the specific factors or thresholds that drive population- or individual-level responses to changes; and conducting population viability analyses. Additionally, wildlife habitat association models for pygmy rabbit and sage-grouse were combined with the oil and gas build-out scenarios to project species responses to alternative energy development scenarios. Outcomes of the wildlife response research are helping decisionmakers and managers identify specific factors that contribute to species population trends, the potential for spatial overlap between important wildlife habitats and proposed energy-resource development, locations of priority habitats for restoration and conservation, and more.

Data and WLCI Web site management highlights of 2015 included not only ongoing software upgrades, but also an update of the datasets displayed in two of the online products developed for the WLCI effort: (1) a map of 15,532 oil and natural gas well pad scars and other features associated with oil and gas extraction, and (2) a map of oil and gas, oil shale, uranium, and solar energy production, both for southwestern Wyoming. In addition, a map viewer was developed for a previously published map of coal and wind production in relation to sage-grouse distribution and core management areas in southwestern Wyoming. Combined, these maps place valuable decision-support tools in the hands of WLCI partners.

The USGS coordination efforts on behalf of the WLCI in 2015 included significant work on planning and executing the WLCI science conference. They also included ongoing efforts to support Local Project Development Teams and the WLCI Coordination Team (CT) with developing conservation priorities and strategies, identifying priority areas for future conservation actions, supporting the evaluation and ranking of conservation projects, and evaluating the ways in which proposed habitat projects relate to WLCI priorities. In 2015, the USGS also assisted the WLCI CT with updating the WLCI Conservation Action Plan.

 

Suggested Citation

Bowen, Z.H., Aldridge, C.L., Anderson, P.J., Assal, T.J., Bartos, T.T., Chalfoun, A.D., Chong, G.W., Dematatis, M.K., Eddy-Miller, C.A., Garman, S.L., Germaine, S.S., Homer, C.G., Huber, C.C., Kauffman, M.J., Manier, D.J., Melcher, C.P., Miller, K.A., Norkin, Tamar, Sanders, L.E., Walters, A.W., Wilson, A.B., and Wyckoff, T.B., 2016, U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2015 annual report: U.S. Geological Survey Open-File Report 2016–1141, 59 p., http://dx.doi.org/10.3133/ofr20161141.

ISSN: 2331-1258 (online)

Study Area

Table of Contents

  • Contributing Authors
  • Conversion Factors
  • Common and Scientific Names of Species in this Report
  • Abbreviations Used in this Report
  • Acknowledgments
  • Introduction
  • Highlights of FY2015 USGS WLCI Science Accomplishments
  • Project Reports: Baseline Synthesis
  • Project Reports: Long-Term Monitoring
  • Project Reports: Effectiveness Monitoring
  • Project Reports: Mechanistic Studies of Wildlife
  • Project Reports: Data and Information Management
  • References Cited and FY2015 WLCI Publications
Publication type Report
Publication Subtype USGS Numbered Series
Title U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2015 annual report
Series title Open-File Report
Series number 2016-1141
DOI 10.3133/ofr20161141
Year Published 2016
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Fort Collins Science Center, Core Science Analytics, Synthesis, and Libraries
Description viii, 59 p.
Country United States
State Wyoming
Online Only (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details