Geologic map of the Washington West 30’ × 60’ quadrangle, Maryland, Virginia, and Washington D.C.
Links
- Document: Report (35.5 MB pdf)
- Database: Database (102 MB zip) - Washington West Geologic Map Database
- Metadata: Database Metadata - Washington West Geologic Database Metadata
- Spatial Data:
- Shapefiles (9.08 MB zip) - Washington West Geologic Shapefiles
- Base Map (50.4 MB zip) - Washington West Base Map Files
- Spatial Data (438 KB mxd) - Washington West: Maryland, Virginia, and Washington, D.C. (ArcGIS 10.0)
- Download citation as: RIS | Dublin Core
Abstract
The Washington West 30’ × 60’ quadrangle covers an area of approximately 4,884 square kilometers (1,343 square miles) in and west of the Washington, D.C., metropolitan area. The eastern part of the area is highly urbanized, and more rural areas to the west are rapidly being developed. The area lies entirely within the Chesapeake Bay drainage basin and mostly within the Potomac River watershed. It contains part of the Nation's main north-south transportation corridor east of the Blue Ridge Mountains, consisting of Interstate Highway 95, U.S. Highway 1, and railroads, as well as parts of the Capital Beltway and Interstate Highway 66. Extensive Federal land holdings in addition to those in Washington, D.C., include the Marine Corps Development and Education Command at Quantico, Fort Belvoir, Vint Hill Farms Station, the Naval Ordnance Station at Indian Head, the Chesapeake and Ohio Canal National Historic Park, Great Falls Park, and Manassas National Battlefield Park. The quadrangle contains most of Washington, D.C.; part or all of Arlington, Culpeper, Fairfax, Fauquier, Loudoun, Prince William, Rappahannock, and Stafford Counties in northern Virginia; and parts of Charles, Montgomery, and Prince Georges Counties in Maryland.
The Washington West quadrangle spans four geologic provinces. From west to east these provinces are the Blue Ridge province, the early Mesozoic Culpeper basin, the Piedmont province, and the Coastal Plain province. There is some overlap in ages of rocks in the Blue Ridge and Piedmont provinces. The Blue Ridge province, which occupies the western part of the quadrangle, contains metamorphic and igneous rocks of Mesoproterozoic to Early Cambrian age. Mesoproterozoic (Grenville-age) rocks are mostly granitic gneisses, although older metaigneous rocks are found as xenoliths. Small areas of Neoproterozoic metasedimentary rocks nonconformably overlie Mesoproterozoic rocks. Neoproterozoic granitic rocks of the Robertson River Igneous Suite intruded the Mesoproterozoic rocks. The Mesoproterozoic rocks are nonconformably overlain by Neoproterozoic metasedimentary rocks of the Fauquier and Lynchburg Groups, which in turn are overlain by metabasalt of the Catoctin Formation. The Catoctin Formation is overlain by Lower Cambrian clastic metasedimentary rocks of the Chilhowee Group. The Piedmont province is exposed in the east-central part of the map area, between overlapping sedimentary units of the Culpeper basin on the west and those of the Coastal Plain province on the east. In this area, the Piedmont province contains Neoproterozoic and lower Paleozoic metamorphosed sedimentary, volcanic, and plutonic rocks. Allochthonous mélange complexes on the western side of the Piedmont are bordered on the east by metavolcanic and metasedimentary rocks of the Chopawamsic Formation, which has been interpreted as part of volcanic arc. The mélange complexes are unconformably overlain by metasedimentary rocks of the Popes Head Formation. The Silurian and Ordovician Quantico Formation is the youngest metasedimentary unit in this part of the Piedmont. Igneous rocks include the Garrisonville Mafic Complex, transported ultramafic and mafic inclusions in mélanges, monzogranite of the Dale City pluton, and Ordovician tonalitic and granitic plutons. Jurassic diabase dikes are the youngest intrusions. The fault boundary between rocks of the Blue Ridge and Piedmont provinces is concealed beneath the Culpeper basin in this area but is exposed farther south. Early Mesozoic rocks of the Culpeper basin unconformably overlie those of the Piedmont and Blue Ridge provinces in the central part of the quadrangle. The north-northeast-trending extensional basin contains Upper Triassic to Lower Jurassic nonmarine sedimentary rocks. Lower Jurassic sedimentary strata are interbedded with basalt flows, and both Upper Triassic and Lower Jurassic strata are intruded by diabase of Early Jurassic age. The Bull Run Mountain fault, a major Mesozoic normal fault characterized by down-to-the-east displacement, separates rocks of the Culpeper basin from those of the Blue Ridge province on the west. On the east, the contact between rocks of the Culpeper basin and those of the Piedmont province is an unconformity, which has been locally disrupted by normal faults. Sediments of the Coastal Plain province unconformably overlie rocks of the Piedmont province along the Fall Zone and occupy the eastern part of the quadrangle. Lower Cretaceous deposits of the Potomac Formation consist of fluvial-deltaic gravels, sands, silts, and clays. Discontinuous fluvial and estuarine terrace deposits of Pleistocene and middle- to late-Tertiary age flank the modern Potomac River valley unconformable capping these Cretaceous strata and the crystalline basement where the Cretaceous has been removed by erosion. East of the Potomac River, the Potomac Formation is onlapped and unconformably overlain by a westward thinning wedge of marine sedimentary deposits of Late Cretaceous and early- and late-Tertiary age. Basement rooted Coastal Plain faults of Tertiary to Quaternary age occur along the Fall Zone and this part of the inner Coastal Plain. These Coastal Plain faults have geomorphic expression that appear to influence river drainage patterns.
The geologic map of the Washington West quadrangle is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects. This 1:100,000-scale map is mainly based on more detailed geologic mapping at a scale of 1:24,000.
Suggested Citation
Lyttle, P.T., Aleinikoff, J.N., Burton, W.C., Crider, E.A., Jr., Drake, A.A., Jr., Froelich, A.J., Horton, J.W., Jr., Kasselas, Gregorios, Mixon, R.B., McCartan, Lucy, Nelson, A.E., Newell, W.L., Pavlides, Louis, Powars, D.S., Southworth, C.S., and Weems, R.E., 2017, Geologic map of the Washington West 30’ × 60’ quadrangle, Maryland, Virginia, and Washington D.C.: U.S. Geological Survey Open-File Report 2017–1142, 1 sheet, scale 1:100,000, https://doi.org/10.3133/ofr20171142.
ISSN: 2331-1258 (online)
Study Area
Table of Contents
- Description of Map Units
- Correlation of Map Units
- Explanation of Map Symbols
- References Cited
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Geologic map of the Washington West 30’ × 60’ quadrangle, Maryland, Virginia, and Washington D.C. |
Series title | Open-File Report |
Series number | 2017-1142 |
DOI | 10.3133/ofr20171142 |
Year Published | 2017 |
Language | English |
Publisher | U.S. Geological Survey |
Publisher location | Reston, VA |
Contributing office(s) | Eastern Geology and Paleoclimate Science Center |
Description | Map: 55.30 x 60.78 inches; Database; Database Metadata; Spatial Data |
Country | United States |
State | Maryland, Virginia |
Other Geospatial | Washington, D.C. |
Online Only (Y/N) | Y |
Additional Online Files (Y/N) | N |
Google Analytic Metrics | Metrics page |