The role of lead and excess oxygen in uranite

Open-File Report 57-11
This report concerns work done on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission



Analysed samples of uraninite were x-rayed, annealed by heating to 550° and 900° for various times in a nitrogen atmosphere, and x-rayed again. A decrease in unit cell size was generally observed. Calculations on the basis of Vegard's Law showed that the ordering of the interstitial oxygen ions could account for the decrease in cell size on annealing. The interstitial oxygens are not necessarily completely disordered before annealing. The degree of original disorder is dependent on the Rare Earth/ThO2 ratio; for high ThO2 and low rare earths, the interstitial oxygens are completely random. The degree of disorder apparently depends solely on the composition, and not on the past history of the sample; this implies that the oxygens are being continuously disordered, perhaps by alpha particles, to the equilibrium point determined by the R.E./ThO2 ratio. The degree of ordering of the interstitial oxygens also accounts for the difference in cell size between vein pitchblendes and those from the sediments of the Colorado Plateau.

A study was also made of the degree of oxidation of uraninites. Although the uranium in many pegmatitic uraninites is more oxidized than can be obtained with the cubic UO2 phase in the laboratory, if the atoms proxying for uranium are calculated into the structural formula, and the lead is assumed to be radiogenic and calculated as original uranium, almost all pegmatitic uraninites fall into the range of interstitial oxygen content obtainable in the laboratory. This fact supports the auto-oxidation hypothesis.

Many of the vein and sedimentary pitchblendes have compositions close to U3O8, although they are cubic. They may gave crystallized as U3O8, the decomposed to the cubic phase and a amorphous phase. This suggests that the stability range of U3O8 includes only very exceptional natural conditions.

Vegard's Law calculations, studies of zoning in crystals, differential leaching, polished section textures, and other lines of evidence indicate that lead, including radiogenic lead, is exsolved from uraninite. A study of x-ray line intensities indicates that it exsolves as oriented monomolecular layers of orthohombic PbO (massicot) along cube planes in the uraninite, separating the uraninite crystallites so that the x-ray reflections interfere destructively to different degrees for different reflections.

Publication type Report
Publication Subtype USGS Numbered Series
Title The role of lead and excess oxygen in uranite
Series title Open-File Report
Series number 57-11
DOI 10.3133/ofr5711
Year Published 1957
Language English
Publisher U.S. Geological Survey
Description 100 p.
Google Analytic Metrics Metrics page
Additional publication details