The Shublik Formation (Middle and Late Triassic) is widespread in the surface and subsurface of northern Alaska. Four stratigraphic sections along about 70 miles of the front of the northeastern Brooks Range east of the Canning giver were examined and sampled in detail in 1968. These sections and six-step spectrographic and carbon analyses of the samples combined with other data to provide a preliminary local description of the highly organic unit and of the paleoenvironments.
Thicknesses measured between the overlying Kingak Shale of Jurassic age and the underlying Sadlerochit Formation of Permian and Triassic age range from 400 to more than 800 feet but the 400 feet, obtained from the most completely exposed section, may be closer to the real thickness across the region. The sections consist of organic-rich, phosphatic, and fossiliferous muddy, silty, or carbonate rocks. The general sequence consists, from the bottom up, of a lower unit of phosphatic siltstone, a middle unit of phosphatic carbonate rocks, and an upper unit of shale and carbonate rocks near the Canning River and shale, carbonate rocks, and sandstone to the east.
Although previously designated a basal member of the Kingak Shale (Jurassic), the upper unit is here included with the Shublik on the basis of its regional lithologic relation.
The minor element compositions of the samples of the Shublik Formation are consistent with their carbonaceous and phosphatic natures in that relatively large amounts of copper, molybdenum, nickel, vanadium and rare earths are present. The predominantly sandy rocks of the underlying Sadlerochit Formation (Permian and Triassic) have low contents of most minor elements. The compositions of samples of Kingak Shale have a wide range not readily explicable by the nature of the rock: an efflorescent sulfate salt contains 1,500 ppm nickel and 1,500 ppm zinc and large amounts of other metals derived from weathering of pyrite and leaching of local shale. The only recorded occurrence of silver and 300 ppm lead in gouge along a shear plane may be the result of metals introduced from an extraneous source.
The deposits reflect a marine environment that deepened somewhat following deposition of the Sadlerochit Formation and then shoaled during deposition of the upper limestone-siltstone unit. This apparently resulted from a moderate transgression and regression of the sea with respect to a northwest-trending line between Barrow and the Brooks Range at the International Boundary. Nearer shore facies appear eastward. The phosphate in nodules, fossil molds and oolites, appears to have formed diagenetically within the uncompacted sediment.