Radioactive springs and wells at 33 localities in the States of Colorado, Utah, Arizona, and New Mexico have been studied and sampled to obtain geochemical data to determine whether such data are useful in a uranium exploration program. Most samples were collected from mineral-rich springs probably related to hydrothermal systems of various ages. Two sets of data were obtained, the first based on the chemical composition and physical and chemical properties of spring and ground water, and the second based on the chemical composition of mineral precipitates deposited by radioactive springs. Multivariate statistical analysis of the water data suggests four major geochemical factors affecting the 23 parameters measured. These factors were labeled as total dissolved solids, alkalinity, temperature, and Fe-U concentration. Multivariate statistical analysis of the precipitate data suggests five factors affecting the 32 element values measured. These factors were labeled as mineral contamination, Mn precipitation, Fe-As-Be precipitation, heavy metals precipitation, and Ba-Ra precipitation.
Relative intensities of the geochemical processes represented by the factors were computed using factor scores. Sample localities were ranked on the basis of relative intensities, and the five localities with the highest intensities were selected as being the most favorable for more intensive exploration for uranium. Immediate use of such selection would be experimental because of the lack of industry experience at this time in the exploration of active hydrothermal systems for uranium.