Seismic, magnetic, and geotechnical properties of a landslide and clinker deposits, Powder River basin, Wyoming and Montana

Open-File Report 79-952



Exploitation of vast coal and other resources in the Powder River Basin has caused recent, rapid increases in population and in commercial and residential development and has prompted land utilization studies. Two aspects of land utilization were studied for this report: (1) the seismic and geotechnical properties of a landslide and (2) the seismic, magnetic, and geotechnical properties of clinker deposits. (1) The landslide seismic survey revealed two layers in the slide area. The upper (low-velocity) layer is a relatively weak mantle of colluvium and unconsolidated and weathered bedrock that ranges in thickness from 3.0 to 7.5 m and has an average seismic velocity of about 390 m/s. It overlies high-velocity, relatively strong sedimentary bedrock that has velocities greater than about 1330 m/s. The low-velocity layer is also present at the other eight seismic refraction sites in the basin; a similar layer has also been reported in the Soviet Union in a landslide area over similar bedrock. The buried contact of the low- and high-velocity layers is relatively smooth and is nearly parallel with the restored topographic surface. There is no indication that any of the high-velocity layer (bedrock) has been displaced or removed. The seismic data also show that the shear modulus of the low-velocity layer is only about one-tenth that of the high-velocity layer and the shear strength (at failure) is only about one-thirtieth. Much of the slide failure is clearly in the shear mode, and failure is, therefore, concluded to be confined to the low-velocity layer. The major immediate factor contributing to landslide failure is apparently the addition of moisture to the low-velocity layer. The study implies that the low-velocity layer can be defined over some of the basin by seismic surveys and that they can help predict or delineate potential slides. Preventative actions that could then be taken include avoidance, dewatering, prevention of saturation, buttressing the toe, and unloading the head. The low-velocity layer is usually less than about 5 m thick and may be excavated by dozing, whereas the bedrock must be blasted. Thus, it would seem economically feasible to underpin a structure to nonweathered bedrock or, perhaps, to remove the low-velocity layer prior to construction. (2) Many coal beds in the Powder River Basin have burned along their outcrops, and the resulting intense heat has baked and fused the overlying clastic (sedimentary) rocks into clinkers. The clinkers are very magnetic and a buried edge of a single layer of burn can easily be located by magnetic prospecting methods. Location of the edge is very important in estimating unburned coal deposits, locating clinker quarries, and planning drilling of seismic reflection lines. The clinkers are very porous and highly fractured,-and seismic and geotechnical tests show that they have relatively low strength and competency. Many of the laboratory tests, however, are inherently biased because the clinkers are so highly fractured that only competent samples are selected. The laboratory tests, for example, show that clinkers must be loosened by heavy ripping tractors or blasting, whereas the field data and practical experience indicate that clinkers may be mined with light equipment. Heavy structures such as coal silos and bridge abutments may have to be sited on clinkers. However, differential settlement may occur, with failure in the shear mode, because chimneys of relatively greater strength occur among the weaker clinkers. Preliminary data indicate that the chimneys may be located by magnetic or possibly seismic surveys. Special foundation-preparation techniques could be used or, perhaps, the chimneys could be avoided altogether at a construction site.
Publication type Report
Publication Subtype USGS Numbered Series
Title Seismic, magnetic, and geotechnical properties of a landslide and clinker deposits, Powder River basin, Wyoming and Montana
Series title Open-File Report
Series number 79-952
DOI 10.3133/ofr79952
Edition -
Year Published 1979
Language ENGLISH
Publisher U.S. Geological Survey,
Description iv, 47 p.:ill., maps ;28 cm.
Google Analytic Metrics Metrics page
Additional publication details