The Hyde Park landfill is a 15-acre chemical waste disposal site located north of Niagara Falls, New York. Underlying the site in descending order are: (1) low permeability glacial till, (2) a moderately permeable fractured rock aquifer--the Lockport Dolomite, and (3) a low permeability unit--the Rochester Shale. The site is bounded on three sides by ground-water drains; the Niagara River Gorge, the Niagara Power Project canal, and the power project conduits.
A finite element model was used to simulate ground-water flow along an east-west section through the Hyde Park site (from the power project conduits to the Niagara Gorge). Steady-state conditions were simulated with an average annual recharge rate of 5 inches per year. The calibrated model simulated measured water levels within 5 feet in the glacial till and upper unit of the Lockport Dolomite and approximated the configuration of the water table.
Based on simulation, ground-water flow near the Hyde Park site can be summarized as follows:
1. Specific discharge (Darcy velocity) ranges from about 0.01 to 0.1 foot per day in the upper unit of the Lockport Dolomite to less than 0.00001 foot per day in the Rochester Shale. Real velocities are highest in the upper unit of the Lockport, ranging from about 1.5 to 4.8 feet per day.
2. A ground-water divide exists east of the landfill, indicating that all ground water originating near or flowing beneath the landfill will flow toward and discharge in the gorge.
3. The zone of highest velocities (and presumably greatest potential for transporting chemical contaminants) includes the upper unit of the Lockport and part of the lower unit of the Lockport Dolomite between the landfill and the gorge. The time required for ground water to move from the landfill to the gorge in the Lockport Dolomite is estimated to be 5 to 7 years.