Soil information is an essential theme in a digital information base for land management and resource monitoring, but public land management agencies seldom have detailed soil maps available for all of the area under their administration. Most of these agencies conduct soil surveys on a scheduled basis, but escalating costs and declining budgets are reducing the number of surveys that can be scheduled. Digital elevation and satellite spectral data are available or are obtainable for all areas in the continental United States and may be used as an aid to produce soils data. A study was conducted in the Grass Creek Resource Area in north-central Wyoming to assess the utility of incorporating digital elevation and Landsat data into an information base for soil survey and to evaluate the usefulness of these data as an input to an order-three soil survey. Slope-interval maps were produced from digital elevation data and topographic maps of three 7.5-minute quadrangle areas. These slope-interval maps were then overlaid on orthophotoquadrangles and used to produce photo-interpreted physiographic maps. These physiographic maps were digitized into a data base and used with Landsat multispectral scanner data to produce tabular summaries that describe each map polygon in terms of physiographic unit, slope, aspect, elevation, area, and spectral values. A good
relationship was found between the physiographic units and soil mapping units defined during a conventional soil survey, and between the Landsat spectral categories and existing vegetation communities. Field evaluations confirmed
the feasibility of using this approach for producing physiographic maps as an aid for mapping soils and range sites. The project is a cooperative investigation of the Earth Resources Observation Systems Data Center of the U.S. Geological Survey, the Soil Conservation Service, and the Bureau of Land Management.