Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska: A hydrogeochemical and microbiological investigation workplan

Open-File Report 98-198
By: , and 



Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight into ground-water/surface-water interactions in the subsurface. Characterization of the unsaturated zone will improve our understanding of interactions among ground water, the unsaturated zone, and the atmosphere. The interactions likely of importance to this study include the migration of water, dissolved contaminants, nutrients, and gases (oxygen, carbon dioxide, and methane) between the saturated and unsaturated zones. We will use the results of ground-water chemical analyses to determine the spatial and temporal distribution of (1) chlorinated-hydrocarbon contaminants and their degradation products, (2) oxidation-reduction indicators, (3) nutrients, and (4) major ground-water ions. These water-quality data will provide insight into ground-water flow directions, interactions between ground water and surface water, attenuation of contaminant concentrations caused by dispersion, and intrinsic microbiological processes. Microbiological analyses will indicate whether microorganisms at the site are capable of degrading the contaminants of interest, and will allow us to estimate their potential to attenuate existing contamination. Physical and chemical data interpreted as part of the analysis of ground water and surface water mixing will improve our understanding of the relationship between water quality and contaminant source mixing.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska: A hydrogeochemical and microbiological investigation workplan
Series title Open-File Report
Series number 98-198
DOI 10.3133/ofr98198
Year Published 1998
Language English
Publisher U.S. Geological Survey
Description vii, 49 p.
Country United States
State Alaska
Other Geospatial Fort Wainwright
Google Analytic Metrics Metrics page
Additional publication details