A study of global sand seas

Professional Paper 1052
Edited by: Edwin D. McKee



The birth of the idea that led to this publication on "Global Sand Seas" dates back to the late 1920's. At that time I was engaged in a study of the Coconino Sandstone of Arizona's Grand Canyon. Considerable controversy existed then as to whether this sandstone was a subaqueous deposit or was composed of wind-formed dunes. It became apparent that definitive literature was sparse or lacking on types of dunes, global distribution of these types, the mechanics of their development, the precise nature of their internal structure of cross-stratificiation, and the relation of wind systems to these sand forms. Especially lacking were data on criteria that could confidently be used in the recognition of ancient dunes. 

The common denominator in this publication is eolian sand bodies. Although the book is concerned primarily with desert sand seas, the subject matter is not restricted to deserts; it includes many references to deposits of coastal sand and to sand bodies in humid climates. Nor does the book deal exclusively with dunes, which, according to most definitions, involve mounds or hills. Many references are made to sand sheets, sand stringers, and other types of sand deposits that have no prominent topographic expression. All sand bodies accumulated by the action of wind are discussed.

Chapters A-J of this publication are primarily topical. Chapters cover the grain texture, the color, and the structure of modern dunes and other eolian sands. Special treatment is given to the relation of wind data to dune interpretation, the evolution of form in current-deposited sand bodies as determined from experimental studies, and the discriminant analysis technique for differentiating between coastal and inland desert sands. This topical part of the publication also includes an analysis of criteria used in ancient deposits to interpret their eolian genesis and a consideration of economic application of the principles described, including a discussion of potentials and problems associated with eolian hydrocarbon reservoirs. The final chapters present a discussion of the morphology and distribution of dunes as determined largely from Landsat images.

Chapter K of the publication is devoted to descriptions of major sand seas based largely on thematic maps derived from Landsat (ERTS) mosaics. Although inclusion herein of the actual mosaics proved to be impractical, the maps derived from them do show the distribution and abundance of various dune types and the relations of these types to certain associated features, such as bedrock, water bodies, and juxtaposed dunes. Furthermore, sand roses included with each of these maps enable the user to draw conclusions on the probable relations of wind strength and direction to dune type in a particular area.

Regional studies (chapter K) were a team effort. Analysis of the Landsat (ERTS) mosaics and mapping boundaries of individual dune types were by Carol Breed. Synthesis of the rather voluminous literature and preparation of abstracts covering it was by Camilla MacCauley. Actual preparation of maps was by Franci Lennartz and later by Sarah Andrews. The gathering of data on wind, the calculation of wind roses, and the interpretation of their relations to sand bodies were by Steven Fryberger, assisted by Gary Dean.

Publication type Report
Publication Subtype USGS Numbered Series
Title A study of global sand seas
Series title Professional Paper
Series number 1052
DOI 10.3133/pp1052
Year Published 1979
Language English
Publisher U.S. Government Printing Office
Publisher location Washington, D.C.
Description ix, 429 p.
Google Analytic Metrics Metrics page
Additional publication details