Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were:
* Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter.
* Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils.
* Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions.
* Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes.
* Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards.
* The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter.
* Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for any earthquake. Soft soils beneath the Marina amplified ground shaking to damaging levels and caused liquefaction of sandy artificial fills. Liquefaction required 123 repairs of pipelines in the Municipal Water Supply System, more than three times the number of repairs elsewhere in the system. Approximately 13.6 km of gas-distribution lines were replaced, and more than 20% of the wastewater collection lines were repaired or replaced.