Nutrient Concentrations and Their Relations to the Biotic Integrity of Nonwadeable Rivers in Wisconsin

Professional Paper 1754
Prepared in cooperation with the Wisconsin Department of Natural Resources
By: , and 

Links

Abstract

Excessive nutrient [phosphorus (P) and nitrogen (N)] input from point and nonpoint sources is frequently associated with degraded water quality in streams and rivers. Point-source discharges of nutrients are fairly constant and are controlled by the U.S. Environmental Protection Agency's (USEPA) National Pollutant Discharge Elimination System. To reduce inputs from nonpoint sources, agricultural performance standards and regulations for croplands and livestock operations are being proposed by various States. In addition, the USEPA is establishing regionally based nutrient criteria that can be refined by each State to determine whether actions are needed to improve water quality. More confidence in the environmental benefits of the proposed performance standards and nutrient criteria would be possible with improved understanding of the biotic responses to a range of nutrient concentrations in different environmental settings. To achieve this general goal, the U.S. Geological Survey and the Wisconsin Department of Natural Resources collected data from 282 streams and rivers throughout Wisconsin during 2001 through 2003 to: (1) describe how nutrient concentrations and biotic-community structure differ throughout the State, (2) determine which environmental characteristics are most strongly related to the distribution of nutrient concentrations and biotic-community structure, (3) determine reference conditions for water quality and biotic indices for streams and rivers in the State, (4) determine how the biotic communities in streams and rivers in different areas of the State respond to differences in nutrient concentrations, (5) determine the best regionalization scheme to describe the patterns in reference conditions and the corresponding responses in water quality and the biotic communities (primarily for smaller streams), and (6) develop algorithms to estimate nutrient concentrations in streams and rivers from a combination of biotic indices. The ultimate goal of this study is to provide the information needed to guide the development of regionally based nutrient criteria for Wisconsin streams and rivers. In this report, data collected, primarily in 2003, from 42 nonwadeable rivers are used to describe nutrient concentrations and their relations to the biotic integrity of rivers in Wisconsin. In a separate report by Robertson and others (2006a), the data collected from 240 wadeable streams are used to describe these relations in streams in Wisconsin. Reference water-quality conditions for nonwadeable rivers were found to be similar throughout Wisconsin (approximately 0.035 milligrams per liter (mg/L) for total P (TP), 0.500 mg/L for total N (TN), 4 micrograms per liter for suspended chlorophyll a (SCHL), and greater than 110 centimeters for Secchi-tube depth (SD)). For each category of the biotic community (SCHL, macroinvertebrates, and fish), a few indices were more strongly related to differences in nutrient concentrations than were others. For the indices most strongly related to nutrient concentrations, reference conditions were obtained with a regression approach, from values corresponding to the worst 75th-percentile value from a subset of minimally impacted streams (streams having reference nutrient concentrations), and from the best 25th-percentile value of all the data. Concentrations of TP and TN in nonwadeable rivers increased as the percentage of agricultural land in the basin increased; these increases resulted in increased SCHL concentrations and decreased SDs. The responses in SDs and SCHL concentrations to changes in nutrient concentrations were similar throughout most of the State except in rivers in the southeastern part, where SCHL concentrations were lower than would be expected given their nutrient concentrations. Rivers in the southeastern part of the State had high concentrations of total suspended sediment compared to the SCHL concentrations. Many biotic indices responded to increases in nu

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Nutrient Concentrations and Their Relations to the Biotic Integrity of Nonwadeable Rivers in Wisconsin
Series title Professional Paper
Series number 1754
ISBN 9781411321717
DOI 10.3133/pp1754
Edition Version 1.0
Year Published 2008
Language ENGLISH
Publisher Geological Survey (U.S.)
Contributing office(s) Wisconsin Water Science Center
Description xii, 81 p.
Time Range Start 2003-01-01
Time Range End 2003-12-31
Google Analytic Metrics Metrics page
Additional publication details