Barite (Barium)
Links
- Document: Report (3.91 MB pdf)
- Larger Work: This publication is Chapter D of Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply
- Download citation as: RIS | Dublin Core
Abstract
Barite (barium sulfate, BaSO4) is vital to the oil and gas industry because it is a key constituent of the mud used to drill oil and gas wells. Elemental barium is an additive in optical glass, ceramic glazes, and other products. Within the United States, barite is produced mainly from mines in Nevada. Imports in 2011 (the latest year for which complete data were available) accounted for 78 percent of domestic consumption and came mostly from China.
Barite deposits can be divided into the following four main types: bedded-sedimentary; bedded-volcanic; vein, cavity-fill, and metasomatic; and residual. Bedded-sedimentary deposits, which are found in sedimentary rocks with characteristics of high biological productivity during sediment accumulation, are the major sources of barite production and account for the majority of reserves, both in the United States and worldwide. In 2013, China and India were the leading producers of barite, and they have large identified resources that position them to be significant producers for the foreseeable future. The potential for undiscovered barite resources in the United States and in many other countries is considerable, however. The expected tight supply and rising costs in the coming years will likely be met by increased production from such countries as Kazakhstan, Mexico, Morocco, and Vietnam.
Barium has limited mobility in the environment and exposed barium in the vicinity of barite mines poses minimal risk to human or ecosystem health. Of greater concern is the potential for acidic metal-bearing drainage at sites where the barite ores or waste rocks contain abundant sulfide minerals. This risk is lessened naturally if the host rocks at the site are acid-neutralizing, and the risk can also be lessened by engineering measures.
Suggested Citation
Johnson, C.A., Piatak, N.M., and Miller, M.M., 2017, Barite (Barium), chap. D of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. D1–D18, https://doi.org/10.3133/pp1802D.
ISSN: 2330-7102 (online)
ISSN: 1044-9612 (print)
Table of Contents
- Abstract
- Introduction
- Geology
- Resources and Production
- Exploration for New Deposits
- Environmental Considerations
- Problems and Future Research
- References Cited
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Barite (Barium) |
Series title | Professional Paper |
Series number | 1802 |
Chapter | D |
ISBN | 978-1-4113-3991-0 |
DOI | 10.3133/pp1802D |
Year Published | 2017 |
Language | English |
Publisher | U.S. Geological Survey |
Publisher location | Reston, VA |
Contributing office(s) | Crustal Geophysics and Geochemistry Science Center, Eastern Mineral and Environmental Resources Science Center |
Description | vii, 18 p. |
Larger Work Type | Report |
Larger Work Subtype | USGS Numbered Series |
Larger Work Title | Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply |
Online Only (Y/N) | N |
Additional Online Files (Y/N) | N |
Google Analytic Metrics | Metrics page |