Erosional and Depositional Aspects of Hurricane Camille in Virginia, 1969

Professional Paper 804
By:  and 



Probably the worst natural disaster in central Virginia's recorded history was the flood resuiting from an 8-hour deluge of about 28 inches (710 mm) of rain on the night of August 19-20, 1969. This study examines some of the intensive sediment erosion and deposition that resulted from the storm and flood. Most of the 150 people whom the flood killed in this mountainous area died from broken bones and other blunt-force injuries, rather than by drowning. The transport of sediment and other debris by the water therefore was very significant in loss of life and in property damage. Erosion resulted mainly from debris avalanches down the mountain-sides and channel scour along streams and head-water tributaries. Total amounts of sediment yield from certain mountainous areas in Nelson County were about 3.2-4.6 million cubic feet per square mile, probably the equivalent of several thousand years of normal denudation. Characteristics of the debris avalanches were that (1) they usually followed pre-existing depressions on hillsides and occurred on slopes greater than 35 percent, (2) the upslope tip of the avalanche scar tended to be located at the steepest part of the hillside, where the convex slope merged with the concave or planar zone immediately below, (3) hillsides facing north, northeast and east were more susceptible to avalanching than slopes facing other directions, and (4) debris-avalanches caused rapid and devastating surges of water and sediment in the mountain-stream channels. Such surges in some instances temporarily blocked the channel flow upstream. Slightly more than half of the total sediment contributed to the stream system was from erosion of stream channels. Channel erosion was very irregularly distributed; some ravines 10-20 feet wide and 5-10 feet deep were scoured in places which formerly had only a very small channel, whereas other channels only a few hundred yards away experienced little or no channel erosion. By the use of figures for the total amount of sediment removed from a drainage basin and the duration of the storm, estimates were made of the storm-average sediment-transport rate at the mouth of various basins. For drainage basins ranging up to about 1.5 square miles, the estimated storm-average sediment-transport rates varied from practically nothing to as much as 172,000 pounds per second (7.4 million tons per day). The types of sediment deposits were (1) debris-avalanche deposits, rather rare, at the base of hillslopes, (2) mountain-stream channel deposits, usually in scattered sediment patches but locally occurring as large wedge-shaped deposits behind debris dams, (3) alluvial fans, (4) delta-like deposits at the junction of a stream and major highway, where water backed up during the flood due to plugging of a culvert, and (5) accretion deposits on flood plains. The highway deltas and some downstream flood-plain sediments consisted mostly of sand-sized grains, but the other types of deposits usually contained particles ranging from silt or clay to boulders 5-10 feet in diameter. Changes in grain size and in volume of deposition with distance downstream were measured, and sedimentary features of the various types of deposits are described.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Erosional and Depositional Aspects of Hurricane Camille in Virginia, 1969
Series title Professional Paper
Series number 804
DOI 10.3133/pp804
Edition -
Year Published 1973
Language ENGLISH
Publisher U.S. Geological Survey
Contributing office(s) U.S. Geological Survey
Description vi, 80 p.
Google Analytic Metrics Metrics page
Additional publication details