The valley of the Ohio River is filled with alluvium and outwash (unit Qal), which total 33-39 m thick under the land surface in the southeast part of the West Franklin quadrangle in Indiana, and 30.5-35 m thick under Diamond Island in the southwest corner of the quadrangle. The deposits are chiefly fine- to medium-grained, lithic quartzose sand, interbedded by lenses of clay, clayey silt, silt, coarse sand, granules, and gravel. Although grain size of the river alluvium varies widely, in general it fines upward-being gravelly sand to sandy gravel in the lower part, mainly sand in the middle part, and silty and clayey in the upper part (Holocene). The middle and lower parts probably accumulated during the Wisconsin Episode (late Pleistocene). The sandy middle part contains interbeds of clay, silt, and minor gravel. At the base is highly consolidated mud (silt and clay), sand, and gravel 2-10 m thick. This unit may be valley train that predates the Wisconsin Episode.
Creek alluvium (unit Qa) is silt, clayey silt, and subordinate intercalated fine sand, granules, and pebbles; the coarser grains are generally concentrated in the basal 1-2 m of the deposit. Lenses and beds of clay are present locally. Fossil wood collected from an auger hole in the alluvial deposits of Little Creek, at depths of 10.6 m and 6.4 m, were dated 16,650?50 and 11,120?40 radiocarbon years, respectively. Probable lacustrine terrace silt and clay (Qlt), so-called slackwater-lake or backwater deposits, form deposits 12-22 m thick in the lowest reaches of tributary creeks to the Ohio River. The surfaces of the lacustrine deposits are terraces a few meters higher than the modern creek flood plains. Covering the bedrock upland is loess (Ql) 3-7.5 m thick, deposited about 18,000-12,000 years before present. Most surficial deposits in the quadrangle are probably no older than about 35,000 yrs. Lithologic logs, shear-wave velocities, and other cone penetrometer data are used to interpret depositional environments and geologic history of the alluvium and lacustrine deposits.