Digital flood-inundation maps for a 1.7-mile reach of the Leaf River were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The Leaf River study reach extends from just upstream of the U.S. Highway 11 crossing to just downstream of East Hardy/South Main Street and separates the cities of Hattiesburg and Petal, Mississippi. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at
http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water-surface elevations (stages) at the USGS streamgage at Leaf River at Hattiesburg, Mississippi (02473000). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at
http://waterdata.usgs.gov/ms/nwis/uv/?site_no=02473000&PARAmeter_cd=00065,00060. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (
http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. The forecasted peak-stage information, available on the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Leaf River at Hattiesburg, Mississippi, streamgage and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water-surface elevation at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model [derived from Light Detection and Ranging (LiDAR) data having a 0.6-foot vertical accuracy and 9.84-foot horizontal resolution] in order to delineate the area flooded at each 1-foot increment of stream stage. The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.