Maps of Elevation of Top of Pierre Shale and Surficial Deposit Thickness with Hydraulic Properties from Borehole Geophysics and Aquifers Tests within and near Ellsworth Air Force Base, South Dakota, 2020–21
Links
- Document: Pamphlet (2.12 MB pdf) , HTML , XML
- Sheets:
- Sheet 1 (10.9 MB pdf) —Map showing elevation contours of the top of Pierre Shale from well logs and electrical resistivity tomography data
- Sheet 2 (7.83 MB pdf) —Map showing contours of depth to Pierre Shale, hydraulic conductivity, and groundwater velocity of surficial deposits
- Dataset: USGS National Water Information System database —USGS water data for the Nation
- Data Releases:
- USGS data release - —Datasets used to create maps of Pierre Shale elevation and surficial deposit thickness within and near Ellsworth Air Force Base, South Dakota, 2021
- USGS data release - —Electrical resistivity tomography (ERT) and horizontal-to-vertical spectral ratio (HVSR) data collected within and near Ellsworth Air Force Base, South Dakota, from 2014 to 2019
- Download citation as: RIS | Dublin Core
Abstract
The U.S. Geological Survey, in cooperation with the U.S. Air Force Civil Engineer Center, collected borehole geophysical data and completed simple aquifer tests to estimate the thickness and hydraulic properties of surficial deposits. The purpose of data collection was to create generalized contour maps of Pierre Shale elevation and surficial deposit thickness within and near Ellsworth Air Force Base (study area). Natural gamma and electromagnetic induction data were collected to refine or determine surficial deposit thickness at selected wells. Additionally, data from previous geophysical studies and driller logs were compiled and combined with results from natural gamma and electromagnetic induction data to provide a more spatially complete image of the subsurface. Borehole nuclear magnetic resonance (bNMR) data were collected to estimate hydraulic conductivity and water content of surficial deposits overlying Pierre Shale. Simple aquifer tests using water slugs (slug tests) were completed to estimate hydraulic conductivity of surficial deposits, and results were compared to hydraulic conductivity estimates from bNMR data. All data used to construct maps and estimate hydraulic properties are provided in an accompanying U.S. Geological Survey data release (available at https://doi.org/10.5066/P9FLR79F).
Generalized contour maps were constructed using results from 26 borehole geophysical logs, 35 geophysical transects from previous studies, and 304 wells with driller logs. Pierre Shale elevation generally followed land-surface topography, sloping from high elevations in the north to lower elevations in the south. Topographic highs of Pierre Shale, where present, could act as groundwater divides that potentially affect groundwater flow direction. Surficial deposit thickness varied spatially and ranged from 0 to 86 feet. Surficial deposits generally were thickest in higher elevation areas near ephemeral streams in the northern part of the study area. Hydraulic conductivity estimated from bNMR results using two analytical methods ranged from 0.1 to 2,314 feet per day, whereas hydraulic conductivity estimated from slug tests ranged from 0.001 to 193 feet per day. Hydraulic conductivity estimates from slug tests were plotted with surficial deposit thickness contours instead of bNMR estimates because bNMR estimates were determined to overestimate hydraulic conductivity. Hydraulic conductivity values generally were greater in the southwestern part of study area than the northeastern part.
Suggested Citation
Medler, C.J., Eldridge, W.G., Anderson, T.M., and Phillips, S.N., 2023, Maps of elevation of top of Pierre Shale and surficial deposit thickness with hydraulic properties from borehole geophysics and aquifers tests within and near Ellsworth Air Force Base, South Dakota, 2020–21: U.S. Geological Survey Scientific Investigations Map 3502, 25-p. pamphlet, 2 sheets, https://doi.org/10.3133/sim3502.
ISSN: 2329-132X (online)
Study Area
Table of Contents
- Acknowledgments
- Abstract
- Introduction
- Purpose and Scope
- Methods for Determining Pierre Shale Elevation, Surficial Deposit Thickness, and Hydraulic Conductivity of Surficial Deposits
- Geophysical Logging and Slug Test Results
- Summary
- References Cited
- Appendix 1. Colloidal Borescope Flowmeter Logging
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Maps of elevation of top of Pierre Shale and surficial deposit thickness with hydraulic properties from borehole geophysics and aquifers tests within and near Ellsworth Air Force Base, South Dakota, 2020–21 |
Series title | Scientific Investigations Map |
Series number | 3502 |
DOI | 10.3133/sim3502 |
Year Published | 2023 |
Language | English |
Publisher | U.S. Geological Survey |
Publisher location | Reston, VA |
Contributing office(s) | Dakota Water Science Center |
Description | Report: vii, 25 p.; 2 Sheets: 36.00 x 36.00 inches; 2 Data Releases; Dataset |
Country | United States |
State | South Dakota |
Other Geospatial | Ellsworth Air Force Base |
Online Only (Y/N) | Y |
Additional Online Files (Y/N) | Y |
Google Analytic Metrics | Metrics page |