Maps of Elevation of Top of Pierre Shale and Surficial Deposit Thickness with Hydraulic Properties from Borehole Geophysics and Aquifers Tests within and near Ellsworth Air Force Base, South Dakota, 2020–21

Scientific Investigations Map 3502
Prepared in cooperation with the U.S. Air Force Civil Engineer Center
By: , and 

Links

Abstract

The U.S. Geological Survey, in cooperation with the U.S. Air Force Civil Engineer Center, collected borehole geophysical data and completed simple aquifer tests to estimate the thickness and hydraulic properties of surficial deposits. The purpose of data collection was to create generalized contour maps of Pierre Shale elevation and surficial deposit thickness within and near Ellsworth Air Force Base (study area). Natural gamma and electromagnetic induction data were collected to refine or determine surficial deposit thickness at selected wells. Additionally, data from previous geophysical studies and driller logs were compiled and combined with results from natural gamma and electromagnetic induction data to provide a more spatially complete image of the subsurface. Borehole nuclear magnetic resonance (bNMR) data were collected to estimate hydraulic conductivity and water content of surficial deposits overlying Pierre Shale. Simple aquifer tests using water slugs (slug tests) were completed to estimate hydraulic conductivity of surficial deposits, and results were compared to hydraulic conductivity estimates from bNMR data. All data used to construct maps and estimate hydraulic properties are provided in an accompanying U.S. Geological Survey data release (available at https://doi.org/10.5066/P9FLR79F).

Generalized contour maps were constructed using results from 26 borehole geophysical logs, 35 geophysical transects from previous studies, and 304 wells with driller logs. Pierre Shale elevation generally followed land-surface topography, sloping from high elevations in the north to lower elevations in the south. Topographic highs of Pierre Shale, where present, could act as groundwater divides that potentially affect groundwater flow direction. Surficial deposit thickness varied spatially and ranged from 0 to 86 feet. Surficial deposits generally were thickest in higher elevation areas near ephemeral streams in the northern part of the study area. Hydraulic conductivity estimated from bNMR results using two analytical methods ranged from 0.1 to 2,314 feet per day, whereas hydraulic conductivity estimated from slug tests ranged from 0.001 to 193 feet per day. Hydraulic conductivity estimates from slug tests were plotted with surficial deposit thickness contours instead of bNMR estimates because bNMR estimates were determined to overestimate hydraulic conductivity. Hydraulic conductivity values generally were greater in the southwestern part of study area than the northeastern part.

Suggested Citation

Medler, C.J., Eldridge, W.G., Anderson, T.M., and Phillips, S.N., 2023, Maps of elevation of top of Pierre Shale and surficial deposit thickness with hydraulic properties from borehole geophysics and aquifers tests within and near Ellsworth Air Force Base, South Dakota, 2020–21: U.S. Geological Survey Scientific Investigations Map 3502, 25-p. pamphlet, 2 sheets, https://doi.org/10.3133/sim3502.

ISSN: 2329-132X (online)

Study Area

Leaflet | Powered by Esri | Bureau of Land Management, Esri Canada, HERE, Garmin, USGS, NGA, EPA, USDA, NPS

Table of Contents

  • Acknowledgments
  • Abstract
  • Introduction
  • Purpose and Scope
  • Methods for Determining Pierre Shale Elevation, Surficial Deposit Thickness, and Hydraulic Conductivity of Surficial Deposits
  • Geophysical Logging and Slug Test Results
  • Summary
  • References Cited
  • Appendix 1. Colloidal Borescope Flowmeter Logging
Publication type Report
Publication Subtype USGS Numbered Series
Title Maps of elevation of top of Pierre Shale and surficial deposit thickness with hydraulic properties from borehole geophysics and aquifers tests within and near Ellsworth Air Force Base, South Dakota, 2020–21
Series title Scientific Investigations Map
Series number 3502
DOI 10.3133/sim3502
Year Published 2023
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Dakota Water Science Center
Description Report: vii, 25 p.; 2 Sheets: 36.00 x 36.00 inches; 2 Data Releases; Dataset
Country United States
State South Dakota
Other Geospatial Ellsworth Air Force Base
Online Only (Y/N) Y
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details