Chemical characteristics of ground-water discharge along the south rim of Grand Canyon in Grand Canyon National Park, Arizona, 2000-2001

Scientific Investigations Report 2004-5146
By: , and 

Links

Abstract

Springs flowing from the south rim of Grand Canyon are an important resource of Grand Canyon National Park, offering refuge to endemic and exotic terrestrial wildlife species and maintaining riparian areas. Population growth on the Coconino Plateau has increased the demand for additional development of ground-water resources, and such development could reduce spring discharge and affect the sustainability of riparian areas within the park. In addition, springs are an important source of drinking water for hikers and are culturally and economically important to Native Americans living in the region. Water samples were collected from May 2000 to September 2001 from 20 spring and creek sites that discharge water from the Redwall-Muav Limestone aquifer along the south rim of Grand Canyon. Sample collection sites were described and samples were analyzed for major ions, nutrients, trace elements, radioactivity, and selected isotopes, and potential sources of ground-water flow to the springs. Rock samples representing the major stratigraphic units of Grand Canyon were collected near the Bright Angel Fault and analyzed for mineralogy, strontium-87/strontium-86, and carbon-13/carbon-12. The chemical composition of water samples collected from a given spring did not vary appreciably over the course of the study. Although water at each spring had a temporally constant composition, the composition was chemically distinct from that of every other spring sampled, indicating spatial variability in the ground-water composition. Most samples had a calcium magnesium bicarbonate composition; a few had a substantial sulfate component. Concentrations of arsenic, nitrate, selenium, uranium, and gross alpha approached or exceeded U.S. Environmental Protection Agency Maximum Contaminant Levels in water discharging from some springs. Oxygen and hydrogen isotopic compositions varied little among samples, and for most sites the isotopic data plot close to the global meteoric water line or below the local meteoric water line. Isotopic enrichment indicates fractionation due to evaporation occurs at some sites. The evaporative process may occur prior to recharge or post-discharge. Flow paths are differentiated between the eastern part of the study area where strontium-87/strontium-86 values for water from springs and creeks are more radiogenic than strontium-87/strontium-86 values for water that discharges from sites farther west. Tritium and carbon isotope analyses indicate that residence time of ground-water discharge from springs and creeks ranges from less than 50 years to about 3,400 years. Water with a residence time of less than 50 years is absent at several sites. Discharge of most springs and creeks is a mixture of younger and older waters.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Chemical characteristics of ground-water discharge along the south rim of Grand Canyon in Grand Canyon National Park, Arizona, 2000-2001
Series title Scientific Investigations Report
Series number 2004-5146
DOI 10.3133/sir20045146
Year Published 2005
Language English
Publisher U.S. Geological Survey
Contributing office(s) Toxic Substances Hydrology Program
Description 71 p.
Country United States
State Arizona
Other Geospatial Grand Canyon National Park
Scale 24000
Google Analytic Metrics Metrics page
Additional publication details