A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply.
A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to that of 1979-82 and a more severe drought similar to that of 1963-66, but with current (2002) pumping, were compared to results for average monthly recharge conditions (1949-2002). Simulated mild drought conditions showed a reduction of GSB Pond level of about 1.3 feet and a lower streamflow of about 1.7 percent in the nearby stream. Simulated severe drought conditions reduced the pond level at GSB Pond by almost 7 feet and lowered streamflow by about 37 percent. Varying cranberry-irrigation practices had little effect on simulated GSB Pond water levels, but may be important in other ponds. The model was most sensitive to changes in areal recharge. An increase and decrease of 22 percent in recharge produced changes in the GSB Pond water level of +1.4 feet and -2.4 feet, respectively.
The accuracy of simulation results was best in the central portion of the study area in the immediate location of GSB Pond. The model was developed with the study-area boundary far enough away from the GSB Pond area that the boundary would have minimal effect on the water levels in GSB Pond, nearby ponds, and the underlying aquifer system. The model is best suited for use by local and State water managers to assess the effects of different withdrawal scenarios for wells and ponds near GSB Pond and for general delineation of areas contributing recharge to wells and ponds in the vicinity of GSB Pond. The model in its current form may not be well suited to detailed analyses of water budgets and flow patterns for parts of the study area farther from GSB Pond without further investigation, calibration, and data collection.