Natural and diverted low-flow duration discharges for streams affected by the Waiāhole Ditch System, windward O`ahu, Hawai`i

Scientific Investigations Report 2006-5285
Prepared in cooperation with the State of Hawai`i Department of Land and Natural Resources, Commission on Water Resource Management
By:  and 

Links

Abstract

For nearly a century, the Waiahole Ditch System has diverted an average of approximately 27 million gallons per day of water from the wet, northeastern part of windward O`ahu, Hawai`i, to the dry, central part of the island to meet irrigation needs. The system intercepts large amounts of dike-impounded ground water at high altitudes (above approximately 700 to 800 ft) that previously discharged to Waiahole (and its tributaries Waianu and Uwao), Waikane, and Kahana Streams through seeps and springs. Diversion of this ground water has significantly diminished low flows in these streams. Estimates of natural and diverted flows are needed by water managers for (1) setting permanent instream flow standards to protect, enhance, and reestablish beneficial instream uses of water in the diverted streams and (2) allocating the diverted water for instream and offstream uses. Data collected before construction of the Waiahole Ditch System reflect natural (undiverted) flow conditions. Natural low-flow duration discharges for percentiles ranging from 50 to 99 percent were estimated for four sites at altitudes of 75 to 320 feet in Waiahole Stream (and its tributaries Waianu and Uwao Streams), for six sites at altitudes of 10 to 220 feet in Waikane Stream, and for three sites at altitudes of 30 to 80 feet in Kahana Stream. Among the available low-flow estimates along each affected stream, the highest natural Q50 (median) flows on Waiahole (altitude 250 ft), Waianu (altitude 75 ft), Waikane (altitude 75 ft), and Kahana Streams (altitude 30 ft) are 13, 7.0, 5.5, and 22 million gallons per day, respectively. Q50 (median) is just one of five duration percentiles presented in this report to quantify low-flow discharges. All flow-duration estimates were adjusted to a common period of 1960-2004 (called the base period). Natural flow-duration estimates compared favorably with limited pre-ditch streamflow data available for Waiahole and Kahana Streams. Data collected since construction of the ditch system reflect diverted flow conditions, which can be further divided into pre-release and post-release periods - several flow releases to Waiahole, Waianu, and Waikane Streams were initiated between December 1994 and October 2002. Comparison of pre-release to natural flows indicate that the effects of the Waiahole Ditch System diversion are consistently greater at lower low-flow conditions (Q99 to Q90) than at higher low-flow conditions (Q75 to Q50). Results also indicate that the effects of the diversion become less significant as the streams gain additional ground water at lower altitudes. For Waiahole Stream, pre-release flows range from 25 to 28 percent of natural flows at an altitude of 250 feet and from 19 to 20 percent at an altitude of 320 feet. For Waikane Stream, pre-release flows range from 30 to 46 percent of natural flows at an altitude of 10 feet and from 7 to 19 percent at an altitude of 220 feet. For Kahana Stream, pre-release flows range from 65 to 72 percent of natural flows at an altitude of 30 feet and from 58 to 71 percent at an altitude of 80 feet. Estimates of post-release flows were compared with estimates of natural flows to assess how closely current streamflows are to natural conditions. For Waianu Stream, post-release flows at an altitude of 75 feet are 41 to 46 percent lower than corresponding natural flows. For Waikane Stream, post-release flows at an altitude of 75 feet are within 12 percent of the corresponding natural flows. Comparisons of pre-release and post-release flows for Waikane Stream at altitudes of 10 to 220 feet were used to assess downstream changes in flow along the stream reach where flow releases were made. For a particular stream altitude, proportions of pre-release to post-release flows associated with median flows are consistently greater than proportions associated with lower low flows because the relative effect of the flow release is smaller at higher low flows. Similarly, for a particular f

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Natural and diverted low-flow duration discharges for streams affected by the Waiahole Ditch System, windward O`ahu, Hawai`i
Series title Scientific Investigations Report
Series number 2006-5285
DOI 10.3133/sir20065285
Edition Version 1.0
Year Published 2007
Language English
Publisher U.S. Geological Survey
Contributing office(s) Pacific Islands Water Science Center
Description vii, 75 p.
Country United States
State Hawaii
Other Geospatial O`ahu, Waiahole Ditch System
Google Analytic Metrics Metrics page
Additional publication details