Water-quality effects and characterization of indicators of onsite wastewater disposal systems in the east-central Black Hills area, South Dakota, 2006-08

Scientific Investigations Report 2008-5232
Prepared in cooperation with the West Dakota Water Development District and the South Dakota Department of Environment and Natural Resources
By: , and 

Links

Abstract

Onsite wastewater disposal systems (OWDS) are used extensively in the Black Hills of South Dakota where many of the watersheds and aquifers are characterized by fractured or solution-enhanced bedrock with thin soil cover. A study was conducted during 2006-08 to characterize water-quality effects and indicators of OWDS. Water samples were collected and analyzed for potential indicators of OWDS, including chloride, bromide, boron, nitrite plus nitrate (NO2+NO3), ammonia, major ions, nutrients, selected trace elements, isotopes of nitrate, microbiological indicators, and organic wastewater compounds (OWCs). The microbiological indicators were fecal coliforms, Escherichia coli (E. coli), enterococci, Clostridium perfringens (C. perfringens), and coliphages. Sixty ground-water sampling sites were located either downgradient from areas of dense OWDS or in background areas and included 25 monitoring wells, 34 private wells, and 1 spring. Nine surface-water sampling sites were located on selected streams and tributaries either downstream or upstream from residential development within the Precambrian setting. Sampling results were grouped by their hydrogeologic setting: alluvial, Spearfish, Minnekahta, and Precambrian. Mean downgradient dissolved NO2+NO3 concentrations in ground water for the alluvial, Spearfish, Minnekahta, and Precambrian settings were 0.734, 7.90, 8.62, and 2.25 milligrams per liter (mg/L), respectively. Mean downgradient dissolved chloride concentrations in ground water for these settings were 324, 89.6, 498, and 33.2 mg/L, respectively. Mean downgradient dissolved boron concentrations in ground water for these settings were 736, 53, 64, and 43 micrograms per liter (ug/L), respectively. Mean dissolved surface-water concentrations for NO2+NO3, chloride, and boron for downstream sites were 0.222 mg/L, 32.1 mg/L, and 28 ug/L, respectively. Mean values of delta-15N and delta-18O (isotope ratios of 14N to 15N and 18O to 16O relative to standard ratios) for nitrate in ground-water samples were 10.4 and -2.0 per mil (0/100), respectively, indicating a relatively small contribution from synthetic fertilizer and probably a substantial contribution from OWDS. The surface-water sample with the highest dissolved NO2+NO3 concentration of 1.6 mg/L had a delta-15N value of 12.36 0/100, which indicates warm-blooded animals (including humans) as the nitrate source. Fecal coliforms were detected in downgradient ground water most frequently in the Spearfish (19 percent) and Minnekahta (9.7 percent) settings. E. coli was detected most frequently in the Minnekahta (29 percent) and Spearfish (13 percent) settings. Enterococci were detected more frequently than other microbiological indicators in all four settings. Fecal coliforms and E. coli were detected in 73 percent and 95 percent of all surface-water samples, respectively. Enterococci, coliphages (somatic), and C. perfringens were detected in 50, 70, and 50 percent of surface-water samples, respectively. Of the 62 OWC analytes, 12 were detected only in environmental samples, 10 were detected in at least one environmental and one blank sample (not necessarily companion pairs), 2 were detected only in blank samples, and 38 were not detected in any blank, environmental, or replicate sample from either ground or surface water. Eleven different organic compounds were detected in ground-water samples at eight different sites. The most frequently occurring compound was DEET, which was found in 32 percent of the environmental samples, followed by tetrachloroethene, which was detected in 20 percent of the samples. For surface-water samples, 16 organic compounds were detected in 9 of the 10 total samples. The compound with the highest occurrence in surface-water samples was camphor, which was detected in 50 percent of samples. The alluvial setting was characterized by relatively low dissolved NO2+NO3 concentrations, detection of ammonia nitrogen, and relatively high concentr

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Water-quality effects and characterization of indicators of onsite wastewater disposal systems in the east-central Black Hills area, South Dakota, 2006-08
Series title Scientific Investigations Report
Series number 2008-5232
DOI 10.3133/sir20085232
Year Published 2008
Language English
Publisher U.S. Geological Survey
Contributing office(s) South Dakota Water Science Center, Dakota Water Science Center
Description viii, 116 p.
Time Range Start 2006-01-01
Time Range End 2008-12-31
Country United States
State South Dakota
Other Geospatial Black Hills
Google Analytic Metrics Metrics page
Additional publication details