St. Clair River is a connecting channel that transports water from Lake Huron to the St. Clair River Delta and Lake St. Clair. A negative trend has been detected in differences between water levels on Lake Huron and Lake St. Clair. This trend may indicate a combination of flow and conveyance changes within St. Clair River. To identify where conveyance change may be taking place, eight water-level gaging stations along St. Clair River were selected to delimit seven reaches. Positive trends in water-level fall were detected in two reaches, and negative trends were detected in two other reaches. The presence of both positive and negative trends in water-level fall indicates that changes in conveyance are likely occurring among some reaches because all reaches transmit essentially the same flow. Annual water-level fall in reaches and reach lengths was used to compute conveyance ratios for all pairs of reaches by use of water-level data from 1962 to 2007. Positive and negative trends in conveyance ratios indicate that relative conveyance is changing among some reaches. Inverse one-dimensional (1-D) hydrodynamic modeling was used to estimate a partial annual series of effective channel-roughness parameters in reaches forming the St. Clair River for 21 years when flow measurements were sufficient to support parameter estimation. Monotonic, persistent but non-monotonic, and irregular changes in estimated effective channel roughness with time were interpreted as systematic changes in conveyances in five reaches. Time-varying parameter estimates were used to simulate flow throughout the St. Clair River and compute changes in conveyance with time. Based on the partial annual series of parameters, conveyance in the St. Clair River increased about 10 percent from 1962 to 2002. Conveyance decreased, however, about 4.1 percent from 2003 to 2007, so that conveyance was about 5.9 percent higher in 2007 than in 1962.