The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, used ground-penetrating radar to collect measurements of live-bed pier scour and contraction scour at 78 bridges in the Piedmont and Coastal Plain Physiographic Provinces of South Carolina. The 151 measurements of live-bed pier-scour depth ranged from 1.7 to 16.9 feet, and the 89 measurements of live-bed contraction-scour depth ranged from 0 to 17.1 feet. Using hydraulic data estimated with a one-dimensional flow model, predicted live-bed scour depths were computed with scour equations from the Hydraulic Engineering Circular 18 and compared with measured scour. This comparison indicated that predicted pier-scour depths generally exceeded the measured pier-scour depths, and at times predicted pier-scour depths were excessive (overpredictions were as large as 23.1 feet). For live-bed contraction-scour depths, predicted scour was sometimes excessive (overpredictions were as large as 14.3 feet), but often observed contraction scour was underpredicted.
For live-bed pier scour, trends in laboratory and field data were compared and found to be similar. The strongest explanatory variable was pier width, and an envelope curve for assessing the upper bound of live-bed pier scour was developed using pier width as the primary explanatory variable. Relations in the live-bed contraction-scour data also were investigated, and several envelope curves were developed using the geometric-contraction ratio as the primary explanatory variable. The envelope curves developed with the field data have limitations, but the envelope curves can be used as supplementary tools for assessing the potential for live-bed pier and contraction scour in South Carolina.
Data from this study were compiled into a database that includes photographs, measured scour depths, predicted scour depths, limited basin characteristics, limited soil data, and modeled hydraulic data. The South Carolina database can be used in the comparison of sites with similar characteristics to evaluate the potential for scour. In addition, the database can be used to evaluate the performance of various analytical methods for predicting live-bed pier and contraction scour.