Water Quality in the Equus Beds Aquifer and the Little Arkansas River Before Implementation of Large-Scale Artificial Recharge, South-Central Kansas, 1995-2005

Scientific Investigations Report 2010-5023
Prepared in cooperation with the City of Wichita, Kansas, as part of the Equus Beds Groundwater Recharge Project
By: , and 

Links

Abstract

Artificial recharge of the Equus Beds aquifer using runoff from the Little Arkansas River in south-central Kansas was first proposed in 1956 and was one of many options considered by the city of Wichita to preserve its water supply. Declining aquifer water levels of as much as 50 feet exacerbated concerns about future water availability and enhanced migration of saltwater into the aquifer from past oil and gas activities near Burrton and from the Arkansas River. Because Wichita changed water-management strategies and decreased pumping from the Equus Beds aquifer in 1992, water storage in the aquifer recovered by about 50 percent. This recovery is the result of increased reliance on Cheney Reservoir for Wichita water supply, decreased aquifer pumping, and larger than normal precipitation. Accompanying the water-level recovery, the average water-level gradient in the aquifer decreased from about 12 feet per mile in 1992 to about 8 feet per mile in January 2006. An important component of artificial recharge is the water quality of the receiving aquifer and the water being recharged (source water). Water quality within the Little Arkansas River was defined using data from two real-time surface-water-quality sites and discrete samples. Water quality in the Equus Beds aquifer was defined using sample analyses collected at 38 index sites, each with a well completed in the shallow and deep parts of the Equus Beds aquifer. In addition, data were collected at diversion well sites, recharge sites, background wells, and prototype wells for the aquifer storage and recovery project. Samples were analyzed for major ions, nutrients, trace metals, radionuclides, organic compounds, and bacterial and viral indicators. Water-quality constituents of concern for artificial recharge are those constituents that frequently (more than 5 percent of samples) may exceed Federal [U.S. Environmental Protection Agency (USEPA)] and State drinking-water criteria in water samples from the receiving aquifer or in samples from the source water. Constituents of concern include major ions (sulfate and chloride), nutrients (nitrite plus nitrate), trace elements (arsenic, iron, and manganese), organic compounds (atrazine), and fecal bacterial indicators. This report describes the water quality in the Equus Beds aquifer and the Little Arkansas River from 1995 through 2005 before implementation of large-scale recharge activities. Sulfate concentrations in water samples from the Little Arkansas River rarely exceeded Federal secondary drinking water regulation (SDWR) of 250 milligrams per liter (mg/L). Sulfate concentrations in groundwater were exceeded in about 18 percent of the wells in the shallow (less than or equal to 80 feet deep) parts of the aquifer and in about 13 percent of the wells in the deep parts the aquifer. Larger sulfate concentrations were associated with parts of the aquifer with the largest water-level declines. Water-quality changes in the Equus Beds aquifer likely were caused by dewatering and oxidation of aquifer material that subsequently resulted in increased sulfate concentrations as water levels recovered. The primary sources of chloride to the Equus Beds aquifer are from past oil and gas activities near Burrton and from the Arkansas River. Computed chloride concentrations in the Little Arkansas River near Halstead exceeded the Federal SDWR of 250 mg/L about 27 percent of the time (primarily during low-flow conditions). Chloride concentrations in groundwater exceeded 250 mg/L in about 8 percent or less of the study area, primarily near Burrton and along the Arkansas River. Chloride in groundwater near Burrton has migrated downgradient about 3 miles during the past 40 to 45 years. The downward and horizontal migration of the chloride is controlled by the hydraulic gradient in the aquifer, dispersion of chloride, and discontinuous clay layers that can inhibit further downward migration. Chloride in the shallow parts of the Equus Beds

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Water Quality in the Equus Beds Aquifer and the Little Arkansas River Before Implementation of Large-Scale Artificial Recharge, South-Central Kansas, 1995-2005
Series title Scientific Investigations Report
Series number 2010-5023
DOI 10.3133/sir20105023
Edition -
Year Published 2010
Language ENGLISH
Publisher U.S. Geological Survey
Contributing office(s) Kansas Water Science Center
Description Report: vii, 143 p. ; oversized figure (PDF)
Time Range Start 1995-01-01
Time Range End 2005-12-31
Projection Universal Transverse Mercator
Online Only (Y/N) N
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details