Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.
The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells).
The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors affecting groundwater quality.
Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. Benchmarks used in this study were either health-based (regulatory and non-regulatory) or aesthetic based (non-regulatory). For inorganic constituents, relative-concentrations were classified as high (equal to or greater than 1.0), indicating relative-concentrations greater than benchmarks; moderate (equal to or greater than 0.5, and less than 1.0); or, low (less than 0.5). For organic and special- interest constituents [1,2,3-trichloropropane (1,2,3-TCP), N-nitrosodimethylamine (NDMA), and perchlorate], relative- concentrations were classified as high (equal to or greater than 1.0); moderate (equal to or greater than 0.1 and less than 1.0); or, low (less than 0.1).
Aquifer-scale proportion was used as the primary metric in the status assessment for groundwater quality. High aquifer- scale proportion is defined as the percentage of the primary aquifer with relative-concentrations greater than 1.0; moderate and low aquifer-scale proportions are defined as the percentage of the primary aquifer with moderate and low relative- concentrations, respectively. The methods used to calculate aquifer-scale proportions are based on an equal-area grid; thus, the proportions are areal rather than volumetric. Two statistical approaches - grid-based, which used one value per grid cell, and spatially weighted, which used the full dataset - were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90-percent confidence intervals of the grid-based estimates in all cases. The understanding assessment used statistical correlations between constituent relative-concentrations and