Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat
Links
- More information: USGS Index Page
- Document: Report (23.4 MB pdf)
- Download citation as: RIS | Dublin Core
Abstract
In 2002–03, the U.S. Geological Survey conducted a study of the geomorphic, flood, and groundwater-flow characteristics of five Bayfield Peninsula streams, Wisconsin (Cranberry River, Bark River, Raspberry River, Sioux River, and Whittlesey Creek) to determine the physical limitations for brook-trout habitat. The goals of the study were threefold: (1) to describe geomorphic characteristics and processes, (2) to determine how land-cover characteristics affect flood peaks, and (3) to determine how regional groundwater flow patterns affect base flow.
The geomorphic characterization consisted of analyses of historical aerial photographs and General Land Office Survey notes, observations from helicopter video footage, surveys of valley cross sections, and coring. Sources of sediment were identified from the helicopter video and field surveys, and past erosion-control techniques were evaluated. Geomorphic processes, such as runoff sediment erosion, transport, and deposition, are driven by channel location within the drainage network, texture of glacial deposits, and proximity to postglacial lake shorelines; these processes have historically increased because of decreases in upland forest cover and channel roughness. Sources of sediment for all studied streams mainly came from bank, terrace, or bluff erosion along main stem reaches and along feeder tributaries that bisect main-stem entrenched valley sides. Bluff, terrace, and bank erosion were the major sources of sediment to Whittlesey Creek and the Sioux River. No active bluff erosion was observed on the Cranberry River or the Bark River but anecdotal information suggests that landslides occasionally happen on the Cranberry River. For the Bark River, sources of sediment were somewhat evenly divided among road crossings (bridges, culverts, and unimproved forest lanes), terrace erosion, bank erosion, and incision along upper main stems and feeder channels along valley sides. Evaluation of past erosion-control techniques indicated that bluffs were stabilized by a combination of artificial hardening and bioengineering of the bluff base and reducing mass wasting of the tops of the bluffs.
Flood hydrographs for the Cranberry River were simulated for four land-cover scenarios—late 20th century (1992–93), presettlement (before 1870), peak agriculture (1928), and developed (25 percent urban). Results were compared to previous simulations of flood peaks for Whittlesey Creek and for North Fish Creek (southern adjacent basin to Whittlesey Creek). Even though most uplands are presently forested, flood peaks simulated for 1992–93 were 1.5 to 2 times larger than presettlement flood peaks. The increased flood peaks caused (1) increased incision along upper main stems and tributaries that bisect entrenched valley sides, (2) bluff and terrace erosion along reaches with entrenched valleys, (3) overbank deposition and bar formation in middle and lower main stems, and (4) aggradation in mouth areas.
A base-flow survey was conducted and a groundwater-flow model was developed for the Bayfield Peninsula to delineate groundwater contributing areas. A deep aquifer system, which includes thick deposits of sand and the upper part of the bedrock, is recharged through the permeable sands in the center of the peninsula. Base flow is unevenly distributed among the Bayfield streams and depends on the amount of channel incision and the proximity of the channels to the recharge area and coarse outwash deposits. Groundwater contributing areas for the five streams do not coincide with surface-water-contributing areas. About 89 percent of total recharge to the deep aquifer system discharges to Bayfield streams; the remaining 11 percent directly discharges to Lake Superior. Historical land-cover changes have had negligible effects on groundwater-flow from the deep aquifer system.
Available brook-trout habitat is dependent on the locations of groundwater upwellings, the sizes of flood peaks, and sediment loads. Management practices that focus on reducing or slowing runoff from upland areas and increasing channel roughness have potential to reduce flood peaks, erosion, and sedimentation and improve brook-trout habitat in all Bayfield Peninsula streams.
Study Area
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat |
Series title | Scientific Investigations Report |
Series number | 2014-5007 |
DOI | 10.3133/sir20145007 |
Year Published | 2015 |
Language | English |
Publisher | U.S. Geological Survey |
Publisher location | Reston, VA |
Contributing office(s) | Wisconsin Water Science Center |
Description | vii, 79 p. |
Country | United States |
State | Wisconsin |
Other Geospatial | Bayfield Peninsula |
Online Only (Y/N) | Y |
Additional Online Files (Y/N) | N |
Google Analytic Metrics | Metrics page |