Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

Scientific Investigations Report 2014-5055
Groundwater Resources Program
By: , and 

Links

Abstract

The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification.


Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses.


The study area includes parts of Montana, North Dakota, South Dakota, and Wyoming in the United States and Manitoba and Saskatchewan in Canada. The glacial aquifer system is contained within glacial drift consisting primarily of till, with smaller amounts of glacial outwash sand and gravel deposits. The lower Tertiary and Upper Cretaceous aquifer systems are contained within several formations of the Tertiary and Cretaceous geologic systems, which are hydraulically separated from underlying aquifers by a basal confining unit. The lower Tertiary and Upper Cretaceous aquifer systems each were divided into three hydrogeologic units that correspond to one or more lithostratigraphic units.


The period prior to 1960 is defined as the predevelopment period when little groundwater was extracted. From 1960 through 1990, numerous flowing wells were installed near the Yellowstone, Little Missouri and Knife Rivers, resulting in local groundwater declines. Recently developed technologies for the extraction of petroleum resources, which largely have been applied in the study area since about 2005, require millions of gallons of water for construction of each well, with additional water needed for long-term operation; therefore, the potential for an increase in groundwater extraction is high. In this study, groundwater recharge and discharge components were estimated for the period 1981–2005.


Groundwater recharge primarily occurs from infiltration of rainfall and snowmelt (precipitation recharge) and infiltration of streams into the ground (stream infiltration). Total estimated recharge to the Williston and Powder River control volumes is 4,560 and 1,500 cubic feet per second, respectively. Estimated precipitation recharge is 26 and 15 percent of total recharge for the Williston and Powder River control volumes, respectively. Estimated stream infiltration is 71 and 80 percent of total recharge for the Williston and Powder River control volumes, respectively. Groundwater discharge primarily is to streams and springs and is estimated to be about 97 and 92 percent of total discharge for the Williston and Powder River control volumes, respectively. Most of the remaining discharge results from pumped and flowing wells.


Groundwater flow in the Williston structural basin generally is from the west and southwest toward the east, where discharge to streams occurs. Locally, in the uppermost hydrogeologic units, groundwater generally is unconfined and flows from topographically high to low areas, where discharge to streams occurs. Groundwater flow in the Powder River structural basin generally is toward the north, with local variations, particularly in the upper Fort Union aquifer, where flow is toward streams.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada
Series title Scientific Investigations Report
Series number 2014-5055
DOI 10.3133/sir20145055
Year Published 2014
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) South Dakota Water Science Center, Dakota Water Science Center
Description Report: viii, 41 p.; Appendix figures and tables
Country Canada;United States
State Manitoba;Montana;North Dakota;Saskatchewan;South Dakota;Wyoming
Other Geospatial Powder River Basin;Williston Basin
Datum North American Datum of 1983
Projection North American Lambert Conformal Conic projection
Online Only (Y/N) Y
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details