Evaluation of groundwater and surface-water interactions in the Caddo Nation Tribal Jurisdictional Area, Caddo County, Oklahoma, 2010-13
Links
- More information: USGS Index Page
- Document: Report
- Download citation as: RIS | Dublin Core
Abstract
Streamflows, springs, and wetlands are important natural and cultural resources to the Caddo Nation. Consequently, the Caddo Nation is concerned about the vulnerability of the Rush Springs aquifer to overdrafting and whether the aquifer will continue to be a viable source of water to tribal members and other local residents in the future. Interest in the long-term viability of local water resources has resulted in ongoing development of a comprehensive water plan by the Caddo Nation. As part of a multiyear project with the Caddo Nation to provide information and tools to better manage and protect water resources, the U.S. Geological Survey studied the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer.
The Caddo Nation Tribal Jurisdictional Area is located in southwestern Oklahoma, primarily in Caddo County. Underlying the Caddo Nation Tribal Jurisdictional Area is the Permian-age Rush Springs aquifer. Water from the Rush Springs aquifer is used for irrigation, public, livestock and aquaculture, and other supply purposes. Groundwater from the Rush Springs aquifer also is withdrawn by domestic (self-supplied) wells, although domestic use was not included in the water-use summary in this report. Perennial streamflow in many streams and creeks overlying the Rush Springs aquifer, such as Cobb Creek, Lake Creek, and Willow Creek, originates from springs and seeps discharging from the aquifer.
This report provides information on the evaluation of groundwater and surface-water resources in the Caddo Nation Jurisdictional Area, and in particular, information that describes the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. This report also includes data and analyses of base flow, evidence for groundwater and surface-water interactions, locations of springs and wetland areas, groundwater flows interpreted from potentiometric-surface maps, and hydrographs of water levels monitored in the Caddo Nation Tribal Jurisdictional Area from 2010 to 2013.
Flow in streams overlying the Rush Springs aquifer, on average, were composed of 50 percent base flow in most years. Monthly mean base flow appeared to maintain streamflows throughout each year, but periods of zero flow were documented in daily hydrographs at each measured site, typically in the summer months.
A pneumatic slug-test technique was used at 15 sites to determine the horizontal hydraulic conductivity of streambed sediments in streams overlying the Rush Springs aquifer. Converting horizontal hydraulic conductivities (Kh) from the slug-test analyses to vertical hydraulic conductivities (Kv) by using a ratio of Kv/Kh = 0.1 resulted in estimates of vertical streambed hydraulic conductivity ranging from 0.1 to 8.6 feet per day. Data obtained from a hydraulic potentiomanometer in streambed sediments and streams in August 2012 indicate that water flow was from the streambed sediments to the stream (gaining) at 6 of 15 sites, and that water flow was from the stream to the streambed sediments (losing) at 9 of 15 sites.
The groundwater and surface-water interaction data collected at the Cobb Creek near Eakly, Okla., streamflow gaging station (07325800), indicate that the bedrock groundwater, alluvial groundwater, and surface-water resources are closely connected. Because of this hydrologic connection, large perennial streams in the study area may change from gaining to losing streams in the summer. The timing and severity of this change from a gaining to a losing condition probably is affected by the local or regional withdrawal of groundwater for irrigation in the summer growing season. Wells placed closer to streams have a greater and more immediate effect on alluvial groundwater levels and stream stages than wells placed farther from streams. Large-capacity irrigation wells, even those completed hundreds of feet below land surface in the bedrock aquifer, can induce surface-water flow from nearby streams by lowering alluvial groundwater levels below the stream altitude.
Twenty-five new springs visible from public roads and paths were documented during a survey of springs in 2011. Most of the springs are in upland draws on the flanks of topographic ridges. Wetlands primarily were identified by using a combination of data sources including the National Wetlands Inventory, Soil Survey Geographic database frequently flooded soils maps, and aerial photographs.
Regional flow directions were determined by analysis of water levels measured in 29 wells completed in the Rush 2 Springs aquifer in Caddo County and the Caddo Nation Tribal Jurisdictional Area. Water levels were monitored every 30 minutes in five wells by using a vented pressure transducer and a data-collection platform with real-time transmitting equipment in each well. Those five wells ranged in depth from 210 to 350 feet. Water levels in these five wells indicate that there was a decrease in water storage in the Rush Springs aquifer from October 2010 to June 2013.
Study Area
Publication type | Report |
---|---|
Publication Subtype | USGS Numbered Series |
Title | Evaluation of groundwater and surface-water interactions in the Caddo Nation Tribal Jurisdictional Area, Caddo County, Oklahoma, 2010-13 |
Series title | Scientific Investigations Report |
Series number | 2014-5082 |
DOI | 10.3133/sir20145082 |
Year Published | 2014 |
Language | English |
Publisher | U.S. Geological Survey |
Publisher location | Reston, VA |
Contributing office(s) | Oklahoma Water Science Center |
Description | ix, 54 p. |
Country | United States |
State | Oklahoma |
County | Caddo County |
Other Geospatial | Caddo Nation Tribal Jurisdictional Area |
Datum | North American Datum of 1983 |
Projection | Albers Equal-Area Conic projection |
Online Only (Y/N) | N |
Google Analytic Metrics | Metrics page |