Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

Scientific Investigations Report 2015-5005
Prepared in cooperation with Clarke County and Warren County, Virginia
By:

Links

Abstract

This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

The habitat model used for this study evaluates the suitability of ecological habitat, represented by fish, and recreational habitat, represented by canoeing, based on depth, velocity, and substrate conditions, which are weighted for the physical habitat types (riffles, runs, or pools) present within a stretch of river. Weighted usable-habitat area in the Lockes Mill reach was maximized for adult smallmouth bass and sub-adult smallmouth bass (Micropterus dolomieu) and river chub (Nocomis micropogon) when streamflows were equal to median flow (900 cubic feet per second) for summer months. Ecological maximum weighted usable-habitat areas for smaller fish, such as spotfin or satinfin shiner (Cyprinella spp.), margined madtom (Noturus insignis), and juvenile redbreast sunfish (Lepomis auritus) occurred with 10th percentile flows (482 cubic feet per second) and lower. Recreational weighted usable-habitat areas for canoeing were maximized when streamflows were above the 75th percentile (1,410 cubic feet per second). During historic droughts, streamflows were less than the 10th percentile, and adult smallmouth bass and sub-adult smallmouth bass habitat was below normal for the majority of days during at least 2 months of the summer. When streamflows were less than the lowest 7-day average in a 10-year period, or 7Q10 flow (357 cubic feet per second), margined madtom, river chub, and sub-adult redbreast sunfish habitat areas were below normal as well. Streamflows that limit most fish species habit availability range from 300 to 500 cubic feet per second. For the drought years simulated, flows that were equal to or less than the 10th percentile for summer months did not provide adequate depth for canoe passage through riffle habitats. A modeling limitation for higher flows than those studied during development of the habitat-suitability criteria is that modeled habitat availability will decrease as flows increase.

Time-series analyses were used to investigate changes in habitat availability with increased water withdrawals of 10, 20, and almost 50 percent (48.6 percent) up to the 2040 amounts projected by local water supply plans. Adult and sub-adult smallmouth bass frequently had habitat availability outside the normal range for habitat conditions during drought years, yet 10- or 20-percent increases in withdrawals did not contribute to a large reduction in habitat. When withdrawals were increased by 50 percent, there was an additional decrease in habitat. During 2002 drought scenarios, reduced habitat availability for sub-adult redbreast sunfish or river chub was only slightly evident with 50-percent increased withdrawal scenarios. Recreational habitat represented by canoeing decreased lower than normal during the 2002 drought. For a recent normal year, like 2012, increased water-withdrawal scenarios did not affect habitat availability for fish such as adult and sub-adult smallmouth bass, sub-adult redbreast sunfish, or river chub. Canoeing habitat availability was within the normal range most of 2012, and increased water-withdrawal scenarios showed almost no affect. For both ecological fish habitat and recreational canoeing habitat, the antecedent conditions (habitat within normal range of habitat or below normal) appear to govern whether additional water withdrawals will affect habitat availability. As human populations and water demands increase, many of the ecological or recreational stresses may be lessened by managing the timing of water withdrawals from the system.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia
Series title Scientific Investigations Report
Series number 2015-5005
DOI 10.3133/sir20155005
Year Published 2015
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Virginia Water Science Center
Description v, 30 p.
Country United States
State Virginia
Other Geospatial Shenandoah River
Datum North American Datum of 1983
Projection Universal Transverse Mercator projection, Zone 17N
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details