Quality of Groundwater Used for Domestic Supply in the Gilroy-Hollister Basin and Surrounding Areas, California, 2022

Scientific Investigations Report 2025-5097
Prepared in cooperation with the California State Water Resources Control Board
By:  and 

Links

Abstract

More than 2 million Californians rely on groundwater from domestic wells for drinking-water supply. This report summarizes a 2022 California Groundwater Ambient Monitoring and Assessment Priority Basin Project (GAMA-PBP) water-quality survey of 33 domestic and small-system drinking-water supply wells in the Gilroy-Hollister Valley groundwater basin and the surrounding areas, where more than 20,000 residents are estimated to utilize privately owned domestic wells. The study area includes the Llagas subbasin in the north, the North San Benito subbasin in the south, and the surrounding uplands. The study was focused on groundwater resources used for domestic drinking-water supply, which are mostly drawn from shallower parts of aquifer systems rather than those of groundwater resources used for public drinking-water supply in the same area. This assessment characterized the quality of ambient groundwater in the aquifer before filtration or treatment, rather than the quality of drinking water delivered to the tap.

To provide context, the measured concentrations of constituents in groundwater were compared to Federal and California State regulatory and non-regulatory benchmarks for drinking-water quality. A grid-based method was used to estimate the areal proportions of groundwater resources used for domestic drinking wells that have water-quality constituents present at high concentrations (above the benchmark), moderate concentrations (between one-half of the benchmark and the benchmark for inorganic constituents, or between one-tenth of the benchmark and the benchmark for organic constituents), and low concentrations (less than one-half or one-tenth the benchmark for inorganic and organic constituents, respectively). This method provides statistically representative results at the study-area scale and permits comparisons to other GAMA-PBP study areas. In the study area, inorganic constituents in groundwater were greater than regulatory benchmarks (U.S. Environmental Protection Agency [EPA] or State of California maximum contaminant levels [MCLs]) for public drinking-water quality in 24 percent of domestic groundwater resources. The inorganic constituents present at concentrations greater than MCLs for drinking water were nitrate (as nitrogen), barium, chromium, and selenium. Total dissolved solids (TDS) or manganese were present at concentrations greater than the secondary maximum contaminant levels (SMCLs) that the State of California uses as aesthetic-based benchmarks in 48 percent of domestic groundwater resources. No volatile organic compounds or pesticide constituents were present at concentrations greater than regulatory benchmarks. Total coliform bacteria and enterococci were detected in 4 percent of domestic groundwater resources. Per- and polyfluoroalkyl substances (PFAS) were detected in 19 percent of domestic groundwater resources, and 10 percent had concentrations greater than recently enacted (April 2024) EPA MCLs.

Physical and chemical factors from natural and anthropogenic sources that could affect the groundwater quality were evaluated using results from statistical testing of associations between constituent concentrations and potential explanatory variables. In this study, relevant physical factors include well construction characteristics, groundwater age, site proximity to groundwater recharge or discharge zones, and potential sources of contamination. Relevant chemical factors include the initial chemistry of the recharge water, the mineralogy of the aquifer sediments, and the subsequent shifts in chemistry as biologic and geologic reactions alter groundwater in the subsurface.

Nitrate concentrations were correlated to agricultural land use, distance from the boundary of the Gilroy-Hollister Valley groundwater basin, and the proportion of modern (post-1950s) water captured by the well. Denitrification under anoxic redox conditions can mitigate some nitrate derived from fertilizer application. Total dissolved solids primarily were derived from water-rock interactions with soils and aquifer materials in the study area, but there were high concentrations where agricultural practices contributed additional TDS. Mineralogy of aquifer sediments and rocks also affect barium, selenium, boron, and chromium concentrations in the Gilroy-Hollister Valley groundwater basin. PFAS were positively correlated with urban land use and the proportion of modern water captured by the well.

Plain Language Summary

The U.S. Geological Survey works with the California State Water Resources Control Boards’ Groundwater Ambient Monitoring and Assessment Program to study the quality of groundwater used for  drinking-water supplies across California. This report examines the quality of groundwater collected from 33 private domestic wells in the Gilroy-Hollister Valley groundwater basin and surrounding area in California’s Central Coast region. Groundwater samples were analyzed for human-made and naturally occurring substances that can be found dissolved in groundwater. They were also analyzed for geochemical tracers that can be used to help determined the age of the groundwater and processes affecting the concentrations of dissolved constituents. The water-quality data were compared to Federal and State benchmarks that are applied to public drinking water, such as regulatory maximum contaminant levels (MCLs). Nitrate was detected at concentrations greater than its Federal MCL benchmark in 17 percent of the groundwater samples. Nitrate concentrations above natural background levels were associated with greater agricultural land use near the well, wells tapping a higher proportion of younger groundwater, and absence of anoxic conditions that promote degradation of nitrate. No volatile organic compounds or pesticide constituents were detected at concentrations greater than MCLs, however per- and polyfluoroalkyl substances (PFAS) were detected at concentrations greater than the Federal MCLs enacted in April 2024 in about 10 percent of the groundwater samples. PFAS are used in many consumer products and industrial processes. Occurrences of these elevated concentrations of PFAS were not associated with known potential sources of PFAS contamination to groundwater but were positively correlated with urban land use and the proportion of younger groundwater tapped by the well. Total dissolved solids (TDS, a measure of salinity) were detected at concentrations about the State nonregulatory upper secondary MCL in 24 percent of the groundwater samples. TDS is primarily derived from natural interactions between water and aquifer materials although agricultural practices may contribute additional TDS is some areas. About 20,000 residents in the Gilroy-Hollister area, and more than 2 million people in California, use private domestic wells for drinking water. Therefore, assessing the quality of groundwater used by domestic wells and understanding the factors affecting that quality is important for protecting public health.

Suggested Citation

Faulkner, K.E., and Jurgens, B.C., 2025, Quality of groundwater used for domestic supply in the Gilroy-Hollister basin and surrounding areas, California, 2022: U.S. Geological Survey Scientific Investigations Report 2025–5097, 26 p., https://doi.org/10.3133/sir20255097.

ISSN: 2328-0328 (online)

Study Area

Table of Contents

  • Introduction
  • Hydrologic Setting
  • Methods for Evaluating Groundwater Quality
  • Overview of Water-Quality Results
  • Factors that Affect Groundwater Quality
  • Summary
  • References Cited
Publication type Report
Publication Subtype USGS Numbered Series
Title Quality of groundwater used for domestic supply in the Gilroy-Hollister basin and surrounding areas, California, 2022
Series title Scientific Investigations Report
Series number 2025-5097
DOI 10.3133/sir20255097
Publication Date December 01, 2025
Year Published 2025
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) California Water Science Center
Description viii, 26 p.
Country United States
State California
Other Geospatial Gilroy-Hollister basin
Online Only (Y/N) Y
Additional publication details