Percolation of precipitation through unsaturated zones is important for recharge of ground water. Rain and snowmelt at land surface are partitioned into different pathways including runoff, infiltration, evapotranspiration, unsaturated-zone storage, and recharge. A new package for MODFLOW-2005 called the Unsaturated-Zone Flow (UZF1) Package was developed to simulate water flow and storage in the unsaturated zone and to partition flow into evapotranspiration and recharge. The package also accounts for land surface runoff to streams and lakes.
A kinematic wave approximation to Richards? equation is solved by the method of characteristics to simulate vertical unsaturated flow. The approach assumes that unsaturated flow occurs in response to gravity potential gradients only and ignores negative potential gradients; the approach further assumes uniform hydraulic properties in the unsaturated zone for each vertical column of model cells. The Brooks-Corey function is used to define the relation between unsaturated hydraulic conductivity and water content. Variables used by the UZF1 Package include initial and saturated water contents, saturated vertical hydraulic conductivity, and an exponent in the Brooks-Corey function. Residual water content is calculated internally by the UZF1 Package on the basis of the difference between saturated water content and specific yield.
The UZF1 Package is a substitution for the Recharge and Evapotranspiration Packages of MODFLOW-2005. The UZF1 Package differs from the Recharge Package in that an infiltration rate is applied at land surface instead of a specified recharge rate directly to ground water. The applied infiltration rate is further limited by the saturated vertical hydraulic conductivity. The UZF1 Package differs from the Evapotranspiration Package in that evapotranspiration losses are first removed from the unsaturated zone above the evapotranspiration extinction depth, and if the demand is not met, water can be removed directly from ground water whenever the depth to ground water is less than the extinction depth. The UZF1 Package also differs from the Evapotranspiration Package in that water is discharged directly to land surface whenever the altitude of the water table exceeds land surface. Water that is discharged to land surface, as well as applied infiltration in excess of the saturated vertical hydraulic conductivity, may be routed directly as inflow to specified streams or lakes if these packages are active; otherwise, this water is removed from the model.
The UZF1 Package was tested against the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model for a vertical unsaturated flow problem that includes evapotranspiration losses. This report also includes an example in which MODFLOW-2005 with the UZF1 Package was used to simulate a realistic surface-water/ground-water flow problem that includes time and space variable infiltration, evapotranspiration, runoff, and ground-water discharge to land surface and to streams. Another simpler problem is presented so that the user may use the input files as templates for new problems and to verify proper code installation.